Home
Class 12
MATHS
sin^-1(cos x)+tan ^-1(cot x)...

`sin^-1(cos x)+tan ^-1(cot x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^{-1}(\cos x) + \tan^{-1}(\cot x) \), we will differentiate it step by step. ### Step 1: Rewrite the expression Let \( y = \sin^{-1}(\cos x) + \tan^{-1}(\cot x) \). ### Step 2: Differentiate \( y \) We will differentiate \( y \) with respect to \( x \). Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{d}{dx}(\sin^{-1}(\cos x)) + \frac{d}{dx}(\tan^{-1}(\cot x)) \] ### Step 3: Differentiate \( \sin^{-1}(\cos x) \) Using the derivative of \( \sin^{-1}(u) \) which is \( \frac{1}{\sqrt{1 - u^2}} \) and applying the chain rule: \[ \frac{d}{dx}(\sin^{-1}(\cos x)) = \frac{1}{\sqrt{1 - \cos^2 x}} \cdot (-\sin x) \] Since \( 1 - \cos^2 x = \sin^2 x \), we can simplify this to: \[ \frac{d}{dx}(\sin^{-1}(\cos x)) = \frac{-\sin x}{\sin x} = -1 \] ### Step 4: Differentiate \( \tan^{-1}(\cot x) \) Using the derivative of \( \tan^{-1}(u) \) which is \( \frac{1}{1 + u^2} \) and applying the chain rule: \[ \frac{d}{dx}(\tan^{-1}(\cot x)) = \frac{1}{1 + \cot^2 x} \cdot (-\csc^2 x) \] Since \( 1 + \cot^2 x = \csc^2 x \), we can simplify this to: \[ \frac{d}{dx}(\tan^{-1}(\cot x)) = \frac{-\csc^2 x}{\csc^2 x} = -1 \] ### Step 5: Combine the derivatives Now, we combine the derivatives: \[ \frac{dy}{dx} = -1 - 1 = -2 \] ### Final Answer Thus, the derivative of \( y = \sin^{-1}(\cos x) + \tan^{-1}(\cot x) \) is: \[ \frac{dy}{dx} = -2 \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)(sin x)=x;cos^(-1)(cos x)=x;tan^(-1)(tan x)=x;cot^(-1)(cot x)=x;sec^(-1)(sec x)=x;cos ec^(-1)(cos ecx)

Let f(x)=sin^(-1)(tan x)+cos^(-1)(cot x) then

If y=cot^(-1)(sqrt(cos x))-tan^(-1)(sqrt(cos x)), prove that sin y=tan^(2)(x)/(2)

(cosec x-sin x)(sec x-cos x)(tan x+cot x)=1

sin^-1(-x) = -sin^-1(x); cos^-1(-x) = pi - cos^-1(x); tan^-1(-x) = -tan^-1(x); cot^-1(-x) = pi - cot^-1(x); sec^-1(-x) = pi - sec^-1(x); cosec^-1(-x) = -cosec^-1(X)

The value of sin[cot^(-1){cos(tan^(-1) x)}] is

The value of 2tan^(-1)(cos ec tan^(-1)x-tan cot^(-1)x) is equal to (a)cot ^(-1)x( b ) (cot^(-1)1)/(x) (c)tan ^(-1)x (d) none of these

The value of x for which sin(cot^-1(1+x))=cos (tan^-1x) is

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]