Home
Class 12
MATHS
sin^-1(1-2x^2)...

`sin^-1(1-2x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sin^{-1}(1 - 2x^2) \), we can follow these steps: ### Step 1: Set up the function Let: \[ y = \sin^{-1}(u) \quad \text{where} \quad u = 1 - 2x^2 \] ### Step 2: Differentiate \( y \) with respect to \( u \) Using the derivative of the inverse sine function, we have: \[ \frac{dy}{du} = \frac{1}{\sqrt{1 - u^2}} \] ### Step 3: Differentiate \( u \) with respect to \( x \) Now we differentiate \( u \): \[ u = 1 - 2x^2 \implies \frac{du}{dx} = -4x \] ### Step 4: Apply the chain rule Using the chain rule, we can find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{\sqrt{1 - u^2}} \cdot (-4x) \] ### Step 5: Substitute \( u \) back into the equation Now substitute \( u = 1 - 2x^2 \) back into the equation: \[ \frac{dy}{dx} = \frac{-4x}{\sqrt{1 - (1 - 2x^2)^2}} \] ### Step 6: Simplify the expression Now we need to simplify the expression under the square root: \[ 1 - (1 - 2x^2)^2 = 1 - (1 - 4x^2 + 4x^4) = 4x^2 - 4x^4 \] Thus, we have: \[ \frac{dy}{dx} = \frac{-4x}{\sqrt{4x^2 - 4x^4}} = \frac{-4x}{\sqrt{4x^2(1 - x^2)}} = \frac{-4x}{2\sqrt{1 - x^2} \cdot \sqrt{4x^2}} = \frac{-2}{\sqrt{1 - x^2}} \] ### Final Result Therefore, the derivative of \( y = \sin^{-1}(1 - 2x^2) \) is: \[ \frac{dy}{dx} = \frac{-2}{\sqrt{1 - x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find the (dy)/(dx) of y=sin^(-1)((1-x^2)/(1+x^2))

The value of cos[2tan^(-1)(1+x)/(1-x)+sin^(-1)(1-x^(2))/(1+x^(2))] is

simplify 2tan^(-1)((1+x)/(1-x))+sin^(-1)((1-x^(2))/(1+x^(2)))

Find (dy)/(dx) in the following: y=sin^(-1)((1-x^(2))/(1+x^(2))),0

If y=sin^(-1)((1-x^(2))/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2))) find (dy)/(dx)

Prove that 2tan^(-1)((1+x)/(1-x))+sin^(-1)((1-x^(2))/(1+x^(2)))=pi

Differentiate sin^(-1)((1-x^(2))/(1+x^(2))),0

Differentiate the following w.r.t. x : sin^(-1)((1-x^(2))/(1+x^(2))),0ltxlt1