Home
Class 12
MATHS
tan ^-1((2x)/(1-x^2))...

`tan ^-1((2x)/(1-x^2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential coefficient of the function \( f(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \), we can use a substitution and some trigonometric identities. Here’s a step-by-step solution: ### Step 1: Substitution Let \( x = \tan(\theta) \). Then, we have: \[ \theta = \tan^{-1}(x) \] ### Step 2: Express \( f(x) \) in terms of \( \theta \) Using the double angle formula for tangent, we know: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] Substituting \( \tan(\theta) = x \), we get: \[ \tan(2\theta) = \frac{2x}{1 - x^2} \] Thus, we can rewrite \( f(x) \): \[ f(x) = \tan^{-1}\left(\tan(2\theta)\right) = 2\theta \] ### Step 3: Relate \( \theta \) back to \( x \) Since \( \theta = \tan^{-1}(x) \), we have: \[ f(x) = 2\tan^{-1}(x) \] ### Step 4: Differentiate \( f(x) \) Now, we differentiate \( f(x) \) with respect to \( x \): \[ \frac{d}{dx} f(x) = \frac{d}{dx} (2\tan^{-1}(x)) \] Using the derivative of \( \tan^{-1}(x) \), which is \( \frac{1}{1+x^2} \), we get: \[ \frac{d}{dx} f(x) = 2 \cdot \frac{1}{1+x^2} = \frac{2}{1+x^2} \] ### Final Result Thus, the differential coefficient of the function \( \tan^{-1}\left(\frac{2x}{1-x^2}\right) \) is: \[ \frac{d}{dx} \left(\tan^{-1}\left(\frac{2x}{1-x^2}\right)\right) = \frac{2}{1+x^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

tan^-1((2x)/(1-15x^2))

Prove that int_0^1 tan^-1((2x-1)/(1+x-x^2))dx=0

The derivative of tan^(-1)2(x)/(1-x^(2)) with respect to sin^(-1)2(x)/(1+x^(2)), is

int e^(x)(tan^(-1)x+(2x)/(1+x^(2))^(2))dx

Evaluate inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx

Solve for x:tan^(-1)((2-x)/(2+x))=(1)/(2)tan^(-1)(x)/(2),x>0

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

int_(0)^(1) tan ^(-1) ((2x-1)/(1+x-x^(2)))dx =

Find the value of xtan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))