Home
Class 12
MATHS
tan^-1((1+x)/(1-x))...

`tan^-1((1+x)/(1-x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1}\left(\frac{1+x}{1-x}\right) \), we will follow these steps: ### Step 1: Set up the function Let \[ y = \tan^{-1}\left(\frac{1+x}{1-x}\right) \] ### Step 2: Differentiate using the chain rule Using the chain rule, we know that: \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{1+x}{1-x}\right)^2} \cdot \frac{d}{dx}\left(\frac{1+x}{1-x}\right) \] ### Step 3: Differentiate the inner function Now we need to differentiate the inner function \( \frac{1+x}{1-x} \) using the quotient rule. The quotient rule states that if \( u = 1+x \) and \( v = 1-x \), then: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Calculating \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): - \( \frac{du}{dx} = 1 \) - \( \frac{dv}{dx} = -1 \) Now applying the quotient rule: \[ \frac{d}{dx}\left(\frac{1+x}{1-x}\right) = \frac{(1-x)(1) - (1+x)(-1)}{(1-x)^2} = \frac{1 - x + 1 + x}{(1-x)^2} = \frac{2}{(1-x)^2} \] ### Step 4: Substitute back into the derivative Now substituting back into our derivative: \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{1+x}{1-x}\right)^2} \cdot \frac{2}{(1-x)^2} \] ### Step 5: Simplify the expression Next, we simplify \( 1 + \left(\frac{1+x}{1-x}\right)^2 \): \[ \left(\frac{1+x}{1-x}\right)^2 = \frac{(1+x)^2}{(1-x)^2} = \frac{1 + 2x + x^2}{1 - 2x + x^2} \] Thus, \[ 1 + \left(\frac{1+x}{1-x}\right)^2 = 1 + \frac{1 + 2x + x^2}{1 - 2x + x^2} = \frac{(1 - 2x + x^2) + (1 + 2x + x^2)}{1 - 2x + x^2} = \frac{2 + 2x^2}{1 - 2x + x^2} \] ### Step 6: Final derivative expression Now substituting this back into our derivative: \[ \frac{dy}{dx} = \frac{2}{(1-x)^2} \cdot \frac{1 - 2x + x^2}{2 + 2x^2} = \frac{1 - 2x + x^2}{(1-x)^2(1 + x^2)} \] ### Final Answer Thus, the derivative of \( y = \tan^{-1}\left(\frac{1+x}{1-x}\right) \) is: \[ \frac{dy}{dx} = \frac{1 - 2x + x^2}{(1-x)^2(1 + x^2)} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)+pi then x =

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)

inte^(tan^-1x)(1+x/(1+x^2))dx

If: tan^(-1)((x-1)/(x+1))+ tan^(-1)((2x-1)/(2x+1)) = tan^(-1) (23/36) . Then: x=

The root of the equation tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36)) is

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))