Home
Class 12
MATHS
cos^-1((x)/sqrt(1+x^2))...

`cos^-1((x)/sqrt(1+x^2))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \cos^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right) \) with respect to \( x \), we will follow these steps: ### Step 1: Identify the function We start with the function: \[ y = \cos^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right) \] ### Step 2: Differentiate using the chain rule To differentiate \( y \) with respect to \( x \), we use the chain rule. The derivative of \( \cos^{-1}(u) \) is given by: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx} \] where \( u = \frac{x}{\sqrt{1+x^2}} \). ### Step 3: Calculate \( u \) and \( \frac{du}{dx} \) First, we need to find \( u^2 \): \[ u^2 = \left(\frac{x}{\sqrt{1+x^2}}\right)^2 = \frac{x^2}{1+x^2} \] Now, we compute \( 1 - u^2 \): \[ 1 - u^2 = 1 - \frac{x^2}{1+x^2} = \frac{1+x^2 - x^2}{1+x^2} = \frac{1}{1+x^2} \] Next, we differentiate \( u \): \[ u = \frac{x}{\sqrt{1+x^2}} \] Using the quotient rule: \[ \frac{du}{dx} = \frac{\sqrt{1+x^2} \cdot 1 - x \cdot \frac{1}{2\sqrt{1+x^2}} \cdot 2x}{1+x^2} \] This simplifies to: \[ \frac{du}{dx} = \frac{\sqrt{1+x^2} - \frac{x^2}{\sqrt{1+x^2}}}{1+x^2} = \frac{1+x^2 - x^2}{(1+x^2)\sqrt{1+x^2}} = \frac{1}{(1+x^2)\sqrt{1+x^2}} \] ### Step 4: Substitute back into the derivative Now we substitute \( u \) and \( \frac{du}{dx} \) back into the derivative: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] Substituting \( 1 - u^2 = \frac{1}{1+x^2} \): \[ \sqrt{1 - u^2} = \sqrt{\frac{1}{1+x^2}} = \frac{1}{\sqrt{1+x^2}} \] Thus, \[ \frac{dy}{dx} = -\frac{1}{\frac{1}{\sqrt{1+x^2}}} \cdot \frac{1}{(1+x^2)\sqrt{1+x^2}} = -\sqrt{1+x^2} \cdot \frac{1}{(1+x^2)\sqrt{1+x^2}} = -\frac{1}{1+x^2} \] ### Final Result The derivative of the function \( y = \cos^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right) \) is: \[ \frac{dy}{dx} = -\frac{1}{1+x^2} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr(1)/(sqrt(2)^(+)))(cos^(-1)(2x sqrt(1-x^(2))))/((x-(1)/(sqrt(2))))-lim_(x rarr(1)/(sqrt(2)^(-)))(cos^(-1)(2x sqrt(1-x^(2))))/((x-(1)/(sqrt(2))))

Differentiate cos^(-1)(2x sqrt(1-x^(2)))-(1)/(sqrt(2))

If x in((1)/(sqrt(2)),1), differentiate tan^(-1)((sqrt(1-x^(2)))/(x)) with respect to cos^(-1)(2x sqrt(1-x^(2)))

Differentiate tan^(-1)((sqrt(1-x^(2)))/(x)) wrt cos^(-1)(2x sqrt(1-x^(2))) if x varepsilon((1)/(sqrt(2)),1)

Differentiate each of the following functions with respect to x:( i) sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

Differentiate tan^(-1)((sqrt(1-x^(2)))/(x)) with respect to cos^(-1)(2x sqrt(1-x^(2))), when x!=0

Find the range of f(x)=cos^(-1)((sqrt(1+2x^(2)))/(1+x^(2)))

Range of f(x)=cos^(-1)((sqrt(1+2x^(2)))/(1+x^(2)))

Prove that sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((x+1)/(sqrt(x^(2)+2x+2)))=tan^(-1)(x^(2)+x+1)

If y=sin^(-1)(x/(sqrt(1+x^2)))+cos^(-1)(1/(sqrt(1+x^2))), 0