Home
Class 12
MATHS
cos^(-1)((x-x^1)/(x+x^(-1)))...

`cos^(-1)((x-x^1)/(x+x^(-1)))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \cos^{-1} \left( \frac{x - \frac{1}{x}}{x + \frac{1}{x}} \right) \), we will follow these steps: ### Step 1: Simplify the Argument of the Inverse Cosine First, we simplify the expression inside the inverse cosine function: \[ \frac{x - \frac{1}{x}}{x + \frac{1}{x}} = \frac{\frac{x^2 - 1}{x}}{\frac{x^2 + 1}{x}} = \frac{x^2 - 1}{x^2 + 1} \] Thus, we can rewrite the function as: \[ y = \cos^{-1} \left( \frac{x^2 - 1}{x^2 + 1} \right) \] ### Step 2: Differentiate Using the Chain Rule Now, we differentiate \( y \) with respect to \( x \). Using the chain rule, we have: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1 - \left( \frac{x^2 - 1}{x^2 + 1} \right)^2}} \cdot \frac{d}{dx} \left( \frac{x^2 - 1}{x^2 + 1} \right) \] ### Step 3: Differentiate the Inner Function Next, we differentiate the inner function \( \frac{x^2 - 1}{x^2 + 1} \) using the quotient rule: Let \( u = x^2 - 1 \) and \( v = x^2 + 1 \). Then: \[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Calculating \( \frac{du}{dx} = 2x \) and \( \frac{dv}{dx} = 2x \): \[ \frac{d}{dx} \left( \frac{x^2 - 1}{x^2 + 1} \right) = \frac{(x^2 + 1)(2x) - (x^2 - 1)(2x)}{(x^2 + 1)^2} \] Simplifying the numerator: \[ = \frac{2x(x^2 + 1 - x^2 + 1)}{(x^2 + 1)^2} = \frac{4x}{(x^2 + 1)^2} \] ### Step 4: Substitute Back into the Derivative Now substituting back into the derivative: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1 - \left( \frac{x^2 - 1}{x^2 + 1} \right)^2}} \cdot \frac{4x}{(x^2 + 1)^2} \] ### Step 5: Simplify the Square Root Next, we simplify \( 1 - \left( \frac{x^2 - 1}{x^2 + 1} \right)^2 \): \[ 1 - \left( \frac{x^2 - 1}{x^2 + 1} \right)^2 = \frac{(x^2 + 1)^2 - (x^2 - 1)^2}{(x^2 + 1)^2} \] Calculating the numerator: \[ = (x^2 + 1 + x^2 - 1)(x^2 + 1 - (x^2 - 1)) = (2x^2)(2) = 4x^2 \] Thus: \[ 1 - \left( \frac{x^2 - 1}{x^2 + 1} \right)^2 = \frac{4x^2}{(x^2 + 1)^2} \] ### Step 6: Final Derivative Expression Now substituting this back into the derivative: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{\frac{4x^2}{(x^2 + 1)^2}}} \cdot \frac{4x}{(x^2 + 1)^2} \] This simplifies to: \[ \frac{dy}{dx} = -\frac{(x^2 + 1)}{2x} \cdot \frac{4x}{(x^2 + 1)^2} = -\frac{2}{x^2 + 1} \] ### Final Answer Thus, the derivative of the given function is: \[ \frac{dy}{dx} = -\frac{2}{x^2 + 1} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)((1-x)/(1+x))

If y=cos ^(-1) ((x^(-1)-x) /(x^(-1) +x)),then (dy)/(dx)=

The number of roots of the equation sin^(-1)x-(1)/(sin^(-1)x)=cos^(-1)x-(1)/(cos^(-1)x) is

The domain of the function f(x) = sin^(-1)((3x^(2) + x-1)/((x-1)^(2))) + cos^(-1)((x-1)/(x+1)) is :

2cos^(-1)x=cos^(-1)(2x^(2)-1)

The value of x satisfying the equation (sin^(-1)x)^(3)-(cos^(-1)x)^(3)+(sin^(-1)x)(cos^(-1)x)(sin^(-1)x-cos^(-1)x)=(pi^(3))/(16) is :

Prove that cos^(-1)(3x-4x^3)=3cos^(-1)x,x in[1/2,1]

If y=(a^cos^((-1)x))/(1+a^cos^((-1)x)) and z=a^cos^((-1)x) , then (dy)/(dz) is equal to........