Home
Class 12
MATHS
cot^(-1)(sqrt(1+x^2)-x)...

`cot^(-1)(sqrt(1+x^2)-x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \cot^{-1}(\sqrt{1+x^2} - x) \), we will follow these steps: ### Step 1: Identify the function to differentiate We have: \[ y = \cot^{-1}(u) \quad \text{where } u = \sqrt{1+x^2} - x \] ### Step 2: Differentiate the outer function The derivative of \( \cot^{-1}(u) \) is given by: \[ \frac{dy}{du} = -\frac{1}{1 + u^2} \] ### Step 3: Differentiate the inner function \( u \) Now, we need to differentiate \( u \): \[ u = \sqrt{1+x^2} - x \] To differentiate \( u \), we will use the chain rule. The derivative of \( \sqrt{1+x^2} \) is: \[ \frac{d}{dx}(\sqrt{1+x^2}) = \frac{1}{2\sqrt{1+x^2}} \cdot (2x) = \frac{x}{\sqrt{1+x^2}} \] The derivative of \( -x \) is simply \( -1 \). Therefore, we have: \[ \frac{du}{dx} = \frac{x}{\sqrt{1+x^2}} - 1 \] ### Step 4: Combine the derivatives using the chain rule Now we can apply the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\frac{1}{1 + u^2} \cdot \left(\frac{x}{\sqrt{1+x^2}} - 1\right) \] ### Step 5: Substitute back for \( u \) Next, we need to substitute back \( u = \sqrt{1+x^2} - x \) into the expression: \[ 1 + u^2 = 1 + (\sqrt{1+x^2} - x)^2 \] Calculating \( u^2 \): \[ u^2 = (\sqrt{1+x^2} - x)^2 = (1+x^2) - 2x\sqrt{1+x^2} + x^2 = 1 + 2x^2 - 2x\sqrt{1+x^2} \] Thus, \[ 1 + u^2 = 2 + 2x^2 - 2x\sqrt{1+x^2} \] ### Step 6: Final expression for the derivative Putting it all together, we have: \[ \frac{dy}{dx} = -\frac{1}{2 + 2x^2 - 2x\sqrt{1+x^2}} \cdot \left(\frac{x}{\sqrt{1+x^2}} - 1\right) \] ### Final Answer Thus, the derivative of \( y = \cot^{-1}(\sqrt{1+x^2} - x) \) is: \[ \frac{dy}{dx} = -\frac{1}{2 + 2x^2 - 2x\sqrt{1+x^2}} \cdot \left(\frac{x}{\sqrt{1+x^2}} - 1\right) \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

cot^(-1)sqrt(x)

Find cot^(-1) ( sqrt((1-x^(2))/(1 + x^(2)))) in terms of cos

Diferentiate the following functions w.r.t.xy=cot^(-1)[(sqrt((1+x^(2)))+1)/(x)]]]

If y= cot^(-1)(sqrt(1+x^2+1)/x) " then find " dy/dx

Find the derivative of y=cot^(-1)((sqrt(1+x^(2))+1)/(x))

Differentiate the following w.r.t. x : cot^(-1)((sqrt(1+x^(2))-1)/(x)),xne0

(d)/(dx)[tan^(-1)sqrt(1+x^(2))-cot^(-1)(-sqrt(1+x^(2)))]=

Prove that cot^(-1)((1+sqrt(1-x^(2)))/x)=(1)/(2)sin^(-1)x

The range of the function f(x)=cot^(-1)((sqrt(3)x^(2))/(1+x^(2))) is (a, b) then the value of b/a is