Home
Class 12
MATHS
tan^-1""((3-5x)/(1+15x))...

`tan^-1""((3-5x)/(1+15x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = \tan^{-1}\left(\frac{3 - 5x}{1 + 15x}\right) \), we can use the formula for the tangent of the difference of two angles. The formula states that: \[ \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x - y}{1 + xy}\right) \] In this case, we can identify \( x = 3 \) and \( y = 5x \). Thus, we can rewrite our expression as: \[ y = \tan^{-1}(3) - \tan^{-1}(5x) \] Now, we will differentiate \( y \) with respect to \( x \). ### Step 1: Differentiate \( y \) Using the derivative of \( \tan^{-1}(u) \), which is given by: \[ \frac{d}{dx} \tan^{-1}(u) = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] we can differentiate \( y \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \tan^{-1}(3) - \tan^{-1}(5x) \right) \] Since \( \tan^{-1}(3) \) is a constant, its derivative is zero. Therefore, we only need to differentiate \( -\tan^{-1}(5x) \): \[ \frac{dy}{dx} = 0 - \frac{d}{dx} \tan^{-1}(5x) \] ### Step 2: Apply the derivative formula Now we apply the derivative formula: \[ \frac{dy}{dx} = -\frac{1}{1 + (5x)^2} \cdot \frac{d}{dx}(5x) \] ### Step 3: Differentiate \( 5x \) The derivative of \( 5x \) with respect to \( x \) is \( 5 \): \[ \frac{d}{dx}(5x) = 5 \] ### Step 4: Substitute back into the derivative Substituting this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = -\frac{1}{1 + 25x^2} \cdot 5 \] ### Step 5: Simplify the expression Thus, we have: \[ \frac{dy}{dx} = -\frac{5}{1 + 25x^2} \] ### Final Answer The final result for the derivative is: \[ \frac{dy}{dx} = -\frac{5}{1 + 25x^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

tan^-1((2x)/(1-15x^2))

Evaluate : int tan^(-1)((x-5)/(1+5x))dx

y=tan^(-1)((2x)/(1+15x^(2))) find (dy)/(dx)

tan^-1((5x)/(1-6x^2))

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^(2)))+tan^(-1)((2+3x)/(3-2x))

Differentiate tan ^(-1) ((8x)/(1-15x^(2))) w.r.to tan ^(-1) ((2xsqrt(1-x^(2)))/(1-2x^(2)))

Differentiate tan ^(-1) ((8x)/(1-15x^(2))) w.r.to x

If y=tan ^(-1) ((4x)/( 1+5x^(2))) +cot ^(-1) ((3-2x)/( 2+3x)),then (dy)/(dx)=