Home
Class 12
MATHS
tan^-1((5x)/(1-6x^2))...

`tan^-1((5x)/(1-6x^2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of differentiating the function \( y = \tan^{-1}\left(\frac{5x}{1 - 6x^2}\right) \), we will follow these steps: ### Step 1: Rewrite the Function Let \[ y = \tan^{-1}\left(\frac{5x}{1 - 6x^2}\right) \] ### Step 2: Identify the Formula We can use the formula for the tangent of a sum: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] In our case, we can express \( \frac{5x}{1 - 6x^2} \) in terms of \( 3x \) and \( 2x \): \[ \frac{5x}{1 - 6x^2} = \frac{3x + 2x}{1 - (3x)(2x)} \] This means we can write: \[ y = \tan^{-1}(3x) + \tan^{-1}(2x) \] ### Step 3: Differentiate the Function Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(\tan^{-1}(3x)) + \frac{d}{dx}(\tan^{-1}(2x)) \] Using the derivative formula for \( \tan^{-1}(u) \), which is \( \frac{1}{1 + u^2} \cdot \frac{du}{dx} \): 1. For \( \tan^{-1}(3x) \): \[ \frac{d}{dx}(\tan^{-1}(3x)) = \frac{1}{1 + (3x)^2} \cdot 3 = \frac{3}{1 + 9x^2} \] 2. For \( \tan^{-1}(2x) \): \[ \frac{d}{dx}(\tan^{-1}(2x)) = \frac{1}{1 + (2x)^2} \cdot 2 = \frac{2}{1 + 4x^2} \] ### Step 4: Combine the Derivatives Now, we combine the results: \[ \frac{dy}{dx} = \frac{3}{1 + 9x^2} + \frac{2}{1 + 4x^2} \] ### Final Answer Thus, the derivative of the function \( y = \tan^{-1}\left(\frac{5x}{1 - 6x^2}\right) \) is: \[ \frac{dy}{dx} = \frac{3}{1 + 9x^2} + \frac{2}{1 + 4x^2} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following function with respect to x:tan^(-1)((x)/(1+6x^(2)))

Differentiate tan^(-1)((x)/(1+6x^(2))) with respect to x

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Fin d (dy)/(dx) ify =tan^(-1)((6x)/(1-5x^(2))) dy,1 Find if y=tan1-5x2

y= tan^(-1)((5-x)/(6x^(2)-5x-3)) find dy/dx

Given that , tan^(-1) ((2x)/(1-x^(2))) = {{:(2 tan^(-1) x"," |x| le 1),(-pi +2 tan^(-1)x","x gt 1),(pi+2 tan^(-1)x"," x lt -1):} sin^(-1)((2x)/(1+x^(2))) ={{:(2 tan^(-1)x","|x|le1),(pi -2 tan^(-1)x","x gt 1 and ),(-(pi+2tan^(-1))","x lt -1):} sin^(-1) x + cos^(-1) x = pi//2 " for " - 1 le x le 1 If cos^(-1). (6x)/(1 + 9x^(2)) = - pi/2 + 2 tan^(-1) 3x" , then " x in

(d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/(dx)[tan^(-1)((5+2x)/(2-5x))]=

tan^(-1)((6x)/(1+16x^(2)))

If y = tan^(-1) (x/(1 + 6x^2)) + tan^(-1) ((2x - 1)/(2x + 1)), (AA x > 0) then (dy)/(dx) is equal to

Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^(2))+tan^(-1)(2+3x)/(3-2x)