Home
Class 12
MATHS
tan^-1((2x)/(1-15x^2))...

`tan^-1((2x)/(1-15x^2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of differentiating the function \( y = \tan^{-1}\left(\frac{2x}{1 - 15x^2}\right) \), we will use the formula for the difference of inverse tangents. The formula states that: \[ \tan^{-1}\left(\frac{x - y}{1 - xy}\right) = \tan^{-1}(x) - \tan^{-1}(y) \] ### Step-by-Step Solution: 1. **Identify x and y**: We can rewrite the expression in the form of the formula: \[ \frac{2x}{1 - 15x^2} = \frac{5x - 3x}{1 - 5x \cdot 3x} \] Here, we can let \( x = 5x \) and \( y = 3x \). 2. **Apply the formula**: Using the formula, we have: \[ y = \tan^{-1}(5x) - \tan^{-1}(3x) \] 3. **Differentiate both sides**: Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(\tan^{-1}(5x)) - \frac{d}{dx}(\tan^{-1}(3x)) \] 4. **Use the derivative of arctan**: The derivative of \( \tan^{-1}(u) \) is given by \( \frac{1}{1 + u^2} \cdot \frac{du}{dx} \). Thus, - For \( \tan^{-1}(5x) \): \[ \frac{d}{dx}(\tan^{-1}(5x)) = \frac{1}{1 + (5x)^2} \cdot 5 = \frac{5}{1 + 25x^2} \] - For \( \tan^{-1}(3x) \): \[ \frac{d}{dx}(\tan^{-1}(3x)) = \frac{1}{1 + (3x)^2} \cdot 3 = \frac{3}{1 + 9x^2} \] 5. **Combine the results**: Now substituting back into the derivative: \[ \frac{dy}{dx} = \frac{5}{1 + 25x^2} - \frac{3}{1 + 9x^2} \] 6. **Final expression**: Thus, the derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{5}{1 + 25x^2} - \frac{3}{1 + 9x^2} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

tan ^-1((2x)/(1-x^2))

If x gt 1 then 2tan^(-1)x - tan^(-1) ((2x)/(1-x^(2))) =______.

Given that , tan^(-1) ((2x)/(1-x^(2))) = {{:(2 tan^(-1) x"," |x| le 1),(-pi +2 tan^(-1)x","x gt 1),(pi+2 tan^(-1)x"," x lt -1):} sin^(-1)((2x)/(1+x^(2))) ={{:(2 tan^(-1)x","|x|le1),(pi -2 tan^(-1)x","x gt 1 and ),(-(pi+2tan^(-1))","x lt -1):} sin^(-1) x + cos^(-1) x = pi//2 " for " - 1 le x le 1 If cos^(-1). (6x)/(1 + 9x^(2)) = - pi/2 + 2 tan^(-1) 3x" , then " x in

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

tan^(-1)x+(tan^(-1)(2x))/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3))

tan^(-1)x+tan^(-1)(2x)/(1-x^(2))=pi+tan^(-1)(3x-x^(3))/(1-3x^(2)),(x>0)

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^(2)))=tan^(-1)((3x-x^(3))/(1-3x^(2)))