Home
Class 12
MATHS
Differentiate tan^-1((4sqrt(x))/(1-4x))...

Differentiate `tan^-1((4sqrt(x))/(1-4x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1}\left(\frac{4\sqrt{x}}{1 - 4x}\right) \), we will follow these steps: ### Step 1: Define the function Let \( y = \tan^{-1}\left(\frac{4\sqrt{x}}{1 - 4x}\right) \). ### Step 2: Differentiate using the chain rule We will use the chain rule for differentiation. The derivative of \( \tan^{-1}(u) \) is given by: \[ \frac{dy}{dx} = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \frac{4\sqrt{x}}{1 - 4x} \). ### Step 3: Differentiate \( u \) Now, we need to differentiate \( u \): \[ u = \frac{4\sqrt{x}}{1 - 4x} \] We will use the quotient rule, which states that if \( u = \frac{f(x)}{g(x)} \), then: \[ \frac{du}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \] Here, \( f(x) = 4\sqrt{x} \) and \( g(x) = 1 - 4x \). #### Step 3.1: Differentiate \( f(x) \) and \( g(x) \) 1. \( f(x) = 4\sqrt{x} \) - \( f'(x) = 4 \cdot \frac{1}{2\sqrt{x}} = \frac{2}{\sqrt{x}} \) 2. \( g(x) = 1 - 4x \) - \( g'(x) = -4 \) #### Step 3.2: Apply the quotient rule Now substituting \( f(x) \), \( f'(x) \), \( g(x) \), and \( g'(x) \) into the quotient rule: \[ \frac{du}{dx} = \frac{\left(\frac{2}{\sqrt{x}}\right)(1 - 4x) - (4\sqrt{x})(-4)}{(1 - 4x)^2} \] Simplifying this: \[ \frac{du}{dx} = \frac{\frac{2(1 - 4x)}{\sqrt{x}} + 16\sqrt{x}}{(1 - 4x)^2} \] Combine the terms in the numerator: \[ \frac{du}{dx} = \frac{2 - 8x + 16x}{\sqrt{x}(1 - 4x)^2} = \frac{2 + 8x}{\sqrt{x}(1 - 4x)^2} \] ### Step 4: Substitute back into the derivative of \( y \) Now substitute \( u \) and \( \frac{du}{dx} \) back into the derivative of \( y \): \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{4\sqrt{x}}{1 - 4x}\right)^2} \cdot \frac{2 + 8x}{\sqrt{x}(1 - 4x)^2} \] ### Step 5: Simplify the expression First, simplify \( 1 + u^2 \): \[ u^2 = \left(\frac{4\sqrt{x}}{1 - 4x}\right)^2 = \frac{16x}{(1 - 4x)^2} \] Thus, \[ 1 + u^2 = 1 + \frac{16x}{(1 - 4x)^2} = \frac{(1 - 4x)^2 + 16x}{(1 - 4x)^2} \] Now, we can write: \[ \frac{dy}{dx} = \frac{(1 - 4x)^2}{(1 - 4x)^2 + 16x} \cdot \frac{2 + 8x}{\sqrt{x}(1 - 4x)^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{2 + 8x}{\sqrt{x}((1 - 4x)^2 + 16x)} \] ### Final Answer Thus, the derivative of \( y = \tan^{-1}\left(\frac{4\sqrt{x}}{1 - 4x}\right) \) is: \[ \frac{dy}{dx} = \frac{2 + 8x}{\sqrt{x}((1 - 4x)^2 + 16x)} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(4)x .

Differentiate tan^(-1)((sqrt(x)-x)/(1+x^(3/2)))

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) w.r.t. tan^(-1)x

Differentiate tan^(-1)((sqrt(1+x^(2)-1))/(x)) with respect to tan^(-1)x,x!=0

Differentiate tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1)x.

Differentiate tan^(-1)((sqrt(x)+sqrt(a))/(1-sqrt(xa))) with respect to x

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to cos^(-1)(2x^(2)-1) .

Differentiate tan^(-1)sqrt((1-x^(2))/(1+x^(2))) with respect to cos^(-1)x^(2).