Home
Class 12
MATHS
sin^-1[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]...

`sin^-1[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]`

Text Solution

Verified by Experts

The correct Answer is:
`1/sqrt(1-x^2)-1/(2sqrt(x-x^2))`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]=

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

The value of sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))] is equal to

int_(0)^(1)sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))dx

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is

Let f(x)=sin^(-1){xsqrt(1-x)-sqrt(x(1-x^(2))}}, AA 0le xle1 then f(x) is

inte^(sin^(-1)x)((x+sqrt(1-x^2))/(sqrt(1-x^2)))dx=

sin^(-1)[sqrt(x^(2)-x^(3))-sqrt(x-x^(3))]=..... a) sin^(-1)x+sin^(-1)sqrt(x) b) sin^(-1)x-sin^(-1)sqrt(x) c) sin^(-1)sqrt(x)-sin^(-1)x d) 2sin^(-1)x

If x in[(sqrt(3))/(2), 1] then [sin^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x]=

Write the following functions in the simplest from : sin^(-1)(x^(2)sqrt(1-x^(2))+xsqrt(1-x^(4)))