Home
Class 12
MATHS
sin^-1((x-1)/(x+1))+sec^-1((x+1)/(x-1))...

`sin^-1((x-1)/(x+1))+sec^-1((x+1)/(x-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of differentiating the function \( y = \sin^{-1}\left(\frac{x-1}{x+1}\right) + \sec^{-1}\left(\frac{x+1}{x-1}\right) \), we can follow these steps: ### Step 1: Rewrite the Function We start with the given function: \[ y = \sin^{-1}\left(\frac{x-1}{x+1}\right) + \sec^{-1}\left(\frac{x+1}{x-1}\right) \] ### Step 2: Use the Property of Inverse Trigonometric Functions We know that: \[ \sec^{-1}(x) = \cos^{-1}\left(\frac{1}{x}\right) \] Thus, we can rewrite the second term: \[ \sec^{-1}\left(\frac{x+1}{x-1}\right) = \cos^{-1}\left(\frac{x-1}{x+1}\right) \] Now, we can express \( y \) as: \[ y = \sin^{-1}\left(\frac{x-1}{x+1}\right) + \cos^{-1}\left(\frac{x-1}{x+1}\right) \] ### Step 3: Apply the Identity for Inverse Functions Using the identity: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] we can simplify \( y \): \[ y = \frac{\pi}{2} \] ### Step 4: Differentiate the Function Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 0 \] since the derivative of a constant is zero. ### Final Answer Thus, the derivative of the given function is: \[ \frac{dy}{dx} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1))

Ify=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)), then (dy)/(dx)

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)) then (dy)/(dx) is equal to :

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)),x>0 Find (dy)/(dx).

sin^(-1)((1)/(x))=cos ec^(-1)(x);cos^(-1)((1)/(x))=sec^(-1)(x);tan^(-1)((1)/(x))=cot^(-1)(x)f or x>0 and -pi+cot^(-1)(x)f or x

If y=sin^(-1)((2x)/(1+x^2))+sec^(-1)((1+x^2)/(1-x^2)), 0

If y=sin^(-1)(3x)+sec^(-1)((1)/(3x)), find (dy)/(dx) .