Home
Class 12
MATHS
tan^-1((sqrt(1+x^2)-1)/x)...

`tan^-1((sqrt(1+x^2)-1)/x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \) with respect to \( x \), we will follow these steps: ### Step 1: Define the function Let: \[ y = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \] ### Step 2: Use the substitution We can use the trigonometric identity to simplify the expression. Set: \[ x = \tan(\theta) \] Then, we have: \[ \sqrt{1+x^2} = \sqrt{1+\tan^2(\theta)} = \sec(\theta) \] Thus, the expression inside the arctangent becomes: \[ \frac{\sec(\theta) - 1}{\tan(\theta)} \] ### Step 3: Simplify the expression Using the identities: \[ \sec(\theta) = \frac{1}{\cos(\theta)}, \quad \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \] we can rewrite: \[ \frac{\sec(\theta) - 1}{\tan(\theta)} = \frac{\frac{1}{\cos(\theta)} - 1}{\frac{\sin(\theta)}{\cos(\theta)}} = \frac{1 - \cos(\theta)}{\sin(\theta)} \] ### Step 4: Use the half-angle identities Using the half-angle identities: \[ 1 - \cos(\theta) = 2\sin^2\left(\frac{\theta}{2}\right), \quad \sin(\theta) = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) \] we can substitute: \[ \frac{1 - \cos(\theta)}{\sin(\theta)} = \frac{2\sin^2\left(\frac{\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)} = \frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)} = \tan\left(\frac{\theta}{2}\right) \] ### Step 5: Substitute back Thus, we have: \[ y = \tan^{-1}\left(\tan\left(\frac{\theta}{2}\right)\right) = \frac{\theta}{2} \] Since \( \theta = \tan^{-1}(x) \), we can write: \[ y = \frac{1}{2} \tan^{-1}(x) \] ### Step 6: Differentiate Now, differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{1+x^2} \cdot \frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{2(1+x^2)} \] ### Final Answer Thus, the derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{1}{2(1+x^2)} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)((1)/(sqrt(x^(2)-1))),|x|>1

Write the following function in the simplest form: tan^(-1)((1)/(sqrt(x^(2)-1))),|x|>1

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

Write the simplest form : tan^(-1)(1/sqrt(x^2 -1)) , |x|gt1

y=tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))), where -1

Prove that : tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2)

If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt((1-x^(2))))=alpha" , then " x^(2) is

If y=tan^(-1)(((sqrt(1+x^(2))-sqrt(1-x^(2)))/((sqrt(1+x^(2))+sqrt(1-x^(2)))) find (dy)/(dx)

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=