Home
Class 12
MATHS
xsin 2y = y cos 2x...

xsin 2y = y cos 2x

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \(x \sin 2y = y \cos 2x\), we will differentiate both sides with respect to \(x\). ### Step-by-Step Solution: 1. **Differentiate Both Sides:** We start with the equation: \[ x \sin 2y = y \cos 2x \] Now, we differentiate both sides with respect to \(x\). 2. **Apply Product Rule on the Left Side:** For the left side \(x \sin 2y\), we apply the product rule: \[ \frac{d}{dx}(x \sin 2y) = \frac{dx}{dx} \cdot \sin 2y + x \cdot \frac{d}{dx}(\sin 2y) \] The derivative of \(\sin 2y\) is \(2 \cos 2y \cdot \frac{dy}{dx}\) (using the chain rule). Thus, we have: \[ \sin 2y + x \cdot 2 \cos 2y \cdot \frac{dy}{dx} \] 3. **Apply Product Rule on the Right Side:** For the right side \(y \cos 2x\), we again apply the product rule: \[ \frac{d}{dx}(y \cos 2x) = \frac{dy}{dx} \cdot \cos 2x + y \cdot \frac{d}{dx}(\cos 2x) \] The derivative of \(\cos 2x\) is \(-2 \sin 2x\). Thus, we have: \[ \frac{dy}{dx} \cdot \cos 2x - 2y \sin 2x \] 4. **Set the Derivatives Equal:** Now we can set the derivatives from both sides equal to each other: \[ \sin 2y + 2x \cos 2y \cdot \frac{dy}{dx} = \frac{dy}{dx} \cdot \cos 2x - 2y \sin 2x \] 5. **Rearranging the Equation:** We want to isolate \(\frac{dy}{dx}\). Rearranging gives us: \[ 2x \cos 2y \cdot \frac{dy}{dx} - \frac{dy}{dx} \cdot \cos 2x = -\sin 2y - 2y \sin 2x \] Factoring out \(\frac{dy}{dx}\): \[ \frac{dy}{dx}(2x \cos 2y - \cos 2x) = -\sin 2y - 2y \sin 2x \] 6. **Solve for \(\frac{dy}{dx}\):** Finally, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{-\sin 2y - 2y \sin 2x}{2x \cos 2y - \cos 2x} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{-\sin 2y - 2y \sin 2x}{2x \cos 2y - \cos 2x} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: xsin2y=ycos2x

If y =e^(xsin 2x +cos 2x ), then (dy)/(dx) =

If sin x + sin y = a and cos x + cos y = b , what is sin x.sin y + cos x .cos y equal to ?

If xsin t,y =cos 2t ,then (dy)/(dx) =

x cos^(2)ydx=ycos^(2)xdy A) xsin2y=ycos2x+c B) x tanx=ytany+c C) x tan x-y tan y=ln(secx/ sec y)+c D) x sec x=y sec y+c

Let sin x + sin y = cos x + cos y for all x, y in R . What is tan(x/2 + y/2) equal to?

(sin 2x - sin 2y)/(cos 2y-cos 2x) = cot (x+y)

Find (dy)/(dx) if xsin y+ y sin x=0