Home
Class 12
MATHS
e^xlogy=sin^(-1)x+sin^(-1)y...

`e^xlogy=sin^(-1)x+sin^(-1)y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( e^x \log y = \sin^{-1} x + \sin^{-1} y \) and find \(\frac{dy}{dx}\), we will differentiate both sides with respect to \(x\). Here’s a step-by-step solution: ### Step 1: Differentiate both sides We start with the equation: \[ e^x \log y = \sin^{-1} x + \sin^{-1} y \] Now, we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(e^x \log y) = \frac{d}{dx}(\sin^{-1} x + \sin^{-1} y) \] ### Step 2: Apply the product rule on the left side Using the product rule on the left side: \[ \frac{d}{dx}(e^x) \cdot \log y + e^x \cdot \frac{d}{dx}(\log y) = \frac{d}{dx}(\sin^{-1} x) + \frac{d}{dx}(\sin^{-1} y) \] This gives us: \[ e^x \log y' + e^x \cdot \frac{1}{y} \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} + \frac{1}{\sqrt{1 - y^2}} \frac{dy}{dx} \] ### Step 3: Rearranging the equation Rearranging the equation to isolate \(\frac{dy}{dx}\): \[ e^x \cdot \frac{1}{y} \frac{dy}{dx} - \frac{1}{\sqrt{1 - y^2}} \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} - e^x \log y \] ### Step 4: Factor out \(\frac{dy}{dx}\) Factoring out \(\frac{dy}{dx}\): \[ \left( e^x \cdot \frac{1}{y} - \frac{1}{\sqrt{1 - y^2}} \right) \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} - e^x \log y \] ### Step 5: Solve for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{\frac{1}{\sqrt{1 - x^2}} - e^x \log y}{e^x \cdot \frac{1}{y} - \frac{1}{\sqrt{1 - y^2}}} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\frac{1}{\sqrt{1 - x^2}} - e^x \log y}{\frac{e^x}{y} - \frac{1}{\sqrt{1 - y^2}}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: e^(x)logy=sin^(-1)x+sin^(-1)y

Find dy/dx where e^x logy = sin^(-1)x + sin^(-1)y

The differential sin^(-1) x + sin^(-1) y = 1 , is

Formula for sin^(-1)(x)+-sin^(-1)(y)

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^(2), then

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

Prove that : sin^(-1)x+sin^(-1)y=sin^(-1)(xsqrt(1-y^2)+ysqrt(1-x^2))

(sin ^ (- 1) x) ^ (2) + (sin ^ (- 1) y) ^ (2) +2 (sin ^ (- 1) x) (sin ^ (- 1) y) = pi ^ (2), then x ^ (2) + y ^ (2) is equal to

Statement -1: If a^(2)+b^(2)=c^(2),c ne 0 then the non zero solution of the equation sin^(-1)((ax)/(c ))+sin^(-1)((bx)/(c))=sin^(-1)x is pm 1,. Statement-2: sin^(-1)x+sin^(-1)y= sin^(-1)(x+y)

If sin^(-1) x + sin^(-1) y = (pi)/(2) and sin 2x = cos 2y , then