Home
Class 12
MATHS
If f (x) = tan ^(-1)sqrt((1 + sin x )/(1...

If `f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) `then `f' ((pi)/(6))` =?

A

`-(1)/(4)`

B

`-(1)/(2)`

C

`(1)/(4)`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative \( f'(\frac{\pi}{6}) \) where \[ f(x) = \tan^{-1} \left( \sqrt{\frac{1 + \sin x}{1 - \sin x}} \right) \] ### Step 1: Simplify the function \( f(x) \) We start with the expression inside the arctangent: \[ \sqrt{\frac{1 + \sin x}{1 - \sin x}} \] Using the identity \( \sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2} \), we can rewrite \( 1 + \sin x \) and \( 1 - \sin x \): \[ 1 + \sin x = 1 + 2 \sin \frac{x}{2} \cos \frac{x}{2} = \left( \cos \frac{x}{2} + \sin \frac{x}{2} \right)^2 \] \[ 1 - \sin x = 1 - 2 \sin \frac{x}{2} \cos \frac{x}{2} = \left( \cos \frac{x}{2} - \sin \frac{x}{2} \right)^2 \] Thus, we can rewrite \( f(x) \) as: \[ f(x) = \tan^{-1} \left( \frac{\cos \frac{x}{2} + \sin \frac{x}{2}}{\cos \frac{x}{2} - \sin \frac{x}{2}} \right) \] ### Step 2: Recognize the tangent function Notice that: \[ \frac{\cos \frac{x}{2} + \sin \frac{x}{2}}{\cos \frac{x}{2} - \sin \frac{x}{2}} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right) \] Thus, we can express \( f(x) \) as: \[ f(x) = \tan^{-1} \left( \tan \left( \frac{\pi}{4} + \frac{x}{2} \right) \right) = \frac{\pi}{4} + \frac{x}{2} \] ### Step 3: Differentiate \( f(x) \) Now we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \frac{\pi}{4} + \frac{x}{2} \right) = \frac{1}{2} \] ### Step 4: Evaluate \( f'(\frac{\pi}{6}) \) Since \( f'(x) = \frac{1}{2} \) is constant, we have: \[ f' \left( \frac{\pi}{6} \right) = \frac{1}{2} \] ### Final Answer Thus, the value of \( f' \left( \frac{\pi}{6} \right) \) is: \[ \boxed{\frac{1}{2}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.1|34 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.2|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5o|20 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

2 tan^(-1) x = sin^(-1) ((2x)/(1+x^(2))) , 1 le x le 1

If sqrt((1-sin x)/(1+sin x))=f((pi)/(4)-(x)/(2)) then f=

Knowledge Check

  • if f(x) = tan^(-1) "" sqrt""[(1+ sin x ]// (1- sin x )], 0 le x le x pi//2 then f'(pi //6) is

    A
    `-1/4`
    B
    `-1/2`
    C
    `1/4`
    D
    `1/2`
  • If f(x)=tan^(-1)sqrt((1+sinx)//(1-sinx)),0le x lt pi//2 , then f'(pi//6) is

    A
    `-1//4`
    B
    `-1//2`
    C
    `1//4`
    D
    `1//2`
  • Let f(x) = 1 + 2 sin x + 2 cos^2 x, 0 le x le pi//2 . Then

    A
    f (x) is greatest at `pi//6`
    B
    least at `0, pi//2`
    C
    increasing in `[0,pi//6]` and decreasing in `(pi//6, pi//2)`
    D
    f(x) is continuous in `[0,pi//2]`
  • Similar Questions

    Explore conceptually related problems

    f(x)=[tan x]+sqrt(tan x-[tan x]): 0 le x lt (pi)/(2) then f(x) is [],[ G.I.F ]

    f(x) = 1 + 2 sin x + 3 cos^2 x, ( 0 le x lt (2pi)/3) is

    If cos x=sqrt(1-sin 2x),0 le x le pi then a value of x is

    If (sin x + cos x)^(1 + sin 2 x) = 2, - pi le x le pi , then x is

    The function f(x) = 1 + x (sin x) [cos x], 0 lt x le (pi)/(2) (where [.] is G.I.F.)