Home
Class 12
MATHS
differentiate sec(tan(sqrt(x)))...

differentiate `sec(tan(sqrt(x)))`

Text Solution

Verified by Experts

Let `y = sec (tan (sqrt(x)))`
`rArr (dy)/(dx)= (d)/(dx) sec (tan (sqrt(x)))`
=` sec(tansqrt(x)). tan (tansqrt(x)).(d)/(dx)(tansqrt(x))`
=` sec(tansqrt(x)). tan (tansqrt(x)).sec^(2) sqrt(x) .(d)/(dx)sqrt(x)`
=` (sec(tansqrt(x)). tan (tansqrt(x)).sec^(2) sqrt(x) )/(2sqrt(x)` .
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.3|15 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.4|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.1|34 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((sqrt(x)-x)/(1+x^(3/2)))

Differentiate tan^-1((4sqrt(x))/(1-4x))

Differentiate tan^(-1)((sqrt(x)+sqrt(a))/(1-sqrt(xa))) with respect to x

If x in((1)/(sqrt(2)),1), differentiate tan^(-1)((sqrt(1-x^(2)))/(x)) with respect to cos^(-1)(2x sqrt(1-x^(2)))

Differentiate sqrt(tan x)

Differentiate e^( tan )^^((-1)sqrt(x)) with respect to x:

differentiate tan^(-1)((1)/(sqrt(x^(2)-1)))

Differentiate tan^(-1)((sqrt(1+x^(2)-1))/(x)) with respect to tan^(-1)x,x!=0

Differentiate tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1)x.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) w.r.t. tan^(-1)x