Home
Class 12
MATHS
x^("sin"x) + ("sin" x)^("cos"x)...

`x^("sin"x) + ("sin" x)^("cos"x)`

Text Solution

Verified by Experts

`"Let" y = x^("sin"x) + ("sin" x)^("cos"x)`
`"Let" u = x^("sin"x) "and " v=("sin" x)^("cos"x)`
`therefore y=u+v`
` rArr (dy)/(dx) = (du)/(dx) + (dv)/(dx) " ".....(1)`
`"Now", u=x^("sin"x)`
`rArr "log"u = "log"(x^("sin"x)) = "sin"x * "log"x`
`rArr (1)/(u) (du)/(dx) = "sin"x * (d)/(dx)"log"x + "log"x * (d)/(dx)"sin"x`
`rArr (du)/(dx) = u[("sin"x)/(x) + "log"x * "cos"x]`
`rArr (du)/(dx) = x^("sin"x)[("sin"x)/(x) + "log"x * "cos"x]`
`"and "v=("sin"x)^("cos"x)`
` rArr " log"v = "log" ("sin"x)^("cos"x)`
`= "cos" x * "log"("sin"x)`
`rArr (1)/(v) (dv)/(dx) = "cos"x (d)/(dx)"log"("sin"x) + "log"("sin"x)(d)/(dx)("cos"x)`
`rArr (dv)/(dx) = v["cos"x * ("cos"x)/("sin"x) + "log" ("sin"x) * (-"sin"x)]`
` rArr (dv)/(dx) = ("sin"x)^("cos"x)["cos"* "cot"x + "sin"x "log"("sin"x)]`
From equation (1)
`(dy)/(dx) = x^("sin"x)[("sin"x)/(x) + "log"x * "cos"x] + ("sin"x)^("cos"x)["cos"x * "cot"x - "sin"x * "log"("sin"x)]`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.6|11 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.7|17 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.4|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following functions with respect to x:(cos x)^(x)( ii) x sqrt(x)(log x)^(sin x)( iv) (sin x)^(cos x)

The solution of the equation "log"_("cos"x) "sin" x + "log"_("sin"x) "cos" x = 2 is given by

Prove that: (i) sin 3x+"sin" 2x-"sin" x = 4 sin x cos((x)/(2))cos((3x)/(2)) (ii) ("sin" 3x+"sin" x)"sin" x+(cos 3x-cos x)cos x=0.

Prove that: (i) (1+"sin" 2theta-cos 2theta)/(1+"sin" 2theta+cos 2theta)="tan" theta . (ii) 2 tan 2x=(cos x+"sin" x)/(cos x-"sin" x)-(cos x-"sin" x)/(cos x+"sin" x) .

1- (sin ^ (2) x) / (1 + cos x) + (1 + cos x) / (sin x) - (sin x) / (1-cos x) =

Solve: (cos x)/(1 - sin x) + (1 - sin x)/(cos x) =

int x^(sin x)((sin x)/(x)+cos x log x)dx is equal to

The minimum value of sin x((1-cos x)/(sin x)+(sin x)/(1-cos x)) is

If: (log_(cos x) sin x) + (log_(sin x)cos x)=2 , then, in general, x=

Prove that: ("sin"3x+"sin"x)"sin"x+(cos3x-cosx)cosx=0