Home
Class 12
MATHS
The value of sum(r=2)^(oo) tan^(-1)((1)/...

The value of `sum_(r=2)^(oo) tan^(-1)((1)/(r^(2)-5r+7))`, is

A

`pi/4`

B

`pi/2`

C

`(3pi)/(4)`

D

`(5pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{r=2}^{\infty} \tan^{-1}\left(\frac{1}{r^2 - 5r + 7}\right) \), we can follow these steps: ### Step 1: Simplify the Argument of the Arctangent We start by rewriting the expression inside the summation: \[ r^2 - 5r + 7 = (r^2 - 5r + 6) + 1 = (r-2)(r-3) + 1 \] Thus, we can express the summation as: \[ \sum_{r=2}^{\infty} \tan^{-1}\left(\frac{1}{(r-2)(r-3) + 1}\right) \] ### Step 2: Rewrite the Arctangent Now, we can rewrite the term \( \tan^{-1}\left(\frac{1}{(r-2)(r-3) + 1}\right) \) using the identity: \[ \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x - y}{1 + xy}\right) \] We can express \( \frac{1}{(r-2)(r-3) + 1} \) as: \[ \tan^{-1}(r-2) - \tan^{-1}(r-3) \] So we have: \[ \sum_{r=2}^{\infty} \left( \tan^{-1}(r-2) - \tan^{-1}(r-3) \right) \] ### Step 3: Recognize the Telescoping Series The series now takes the form of a telescoping series: \[ \left( \tan^{-1}(0) - \tan^{-1}(-1) \right) + \left( \tan^{-1}(1) - \tan^{-1}(0) \right) + \left( \tan^{-1}(2) - \tan^{-1}(1) \right) + \ldots \] Most terms cancel out, leaving us with: \[ \lim_{n \to \infty} \left( \tan^{-1}(n-2) - \tan^{-1}(-1) \right) \] ### Step 4: Evaluate the Limits As \( n \to \infty \), \( \tan^{-1}(n-2) \to \frac{\pi}{2} \) and \( \tan^{-1}(-1) = -\frac{\pi}{4} \). Thus, we have: \[ \frac{\pi}{2} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4} \] ### Final Answer Therefore, the value of the series is: \[ \sum_{r=2}^{\infty} \tan^{-1}\left(\frac{1}{r^2 - 5r + 7}\right) = \frac{3\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(oo)tan^(-1)((4)/(4r^(2)+3))=

sum_(i=1)^(oo)tan^(-1)((1)/(2r^(2)))=

Find the value of sum_(r=0)^(oo) tan^(-1) ((1)/(1 + r + r^(2)))

The value of sum_(r=1)^(oo)tan^(-1)((2r-1)/(r^(4)-2r^(3)+r^(2)+1)) is equal to

The value of sum_(r=1)^(oo)cot^(-1)((r^(2))/(2)+(15)/(8)) is equal to

The value of sum_(r=1)^(11)tan^(2)((r pi)/(24)) is

sum_(r=1)^(oo)tan^(-1)((2)/(1+(2r+1)(2r-1)))

The value of Sigma_(r=1)^(infty) tan^(-1) ( 1/(r^(2) + 5r + 7)) is equal to

The value of sum_(r=1)^(oo)cot^(-1)(2r^(2)) is equal to

sum_(r=1)^9 tan^-1(1/(2r^2)) =