Home
Class 10
MATHS
lim(n rarr oo) (1)/(n)=....

`lim_(n rarr oo) (1)/(n)=`________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \frac{1}{n} \), we can follow these steps: ### Step-by-Step Solution: 1. **Understand the Expression**: We need to evaluate the limit of the expression \( \frac{1}{n} \) as \( n \) approaches infinity. 2. **Substitute Infinity**: As \( n \) increases, we can think about what happens to \( \frac{1}{n} \). If we substitute \( n \) with a very large number (approaching infinity), the expression becomes \( \frac{1}{\text{large number}} \). 3. **Evaluate the Limit**: As \( n \) approaches infinity, \( \frac{1}{n} \) approaches \( \frac{1}{\infty} \). Mathematically, \( \frac{1}{\infty} \) is considered to be 0. 4. **Conclusion**: Therefore, we conclude that: \[ \lim_{n \to \infty} \frac{1}{n} = 0 \] ### Final Answer: \[ \lim_{n \to \infty} \frac{1}{n} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    PEARSON IIT JEE FOUNDATION|Exercise SHORT ANSWER TYPE QUESTIONS|15 Videos
  • LIMITS

    PEARSON IIT JEE FOUNDATION|Exercise ESSA TYPE QUESTIONS|5 Videos
  • LIMITS

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL-3|15 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application Level -3|15 Videos
  • LINEAR PROGRAMMING

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|10 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)tan^-1n/n

lim_(n rarr oo)(1-(2)/(n))^(n)

lim_(n rarr oo)(1+(x)/(n))^(n)

lim_(n rarr oo)(n+(-1)^(n))/(n)

lim_(n rarr oo) (n(n+1))/(n^(2))= ________.

lim_(n rarr oo)(n!)/((n+1)!-n!)

lim_ (n rarr oo) ((n!) ^ ((1) / (n))) / (n) equals

If f(x) is integrable over [1,], then int_(2)^(2)f(x)dx is equal to lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)f((r)/(n))lim_(n rarr oo)(1)/(n)sum_(r=n+1)^(2n)f((r)/(n))lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)f((r+n)/(n))lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)f((r)/(n))

The value of lim_ (n rarr oo) (n + 1) / (n ^ (2)) - :( 1) / (n)

The value of lim_(n rarr oo)((1)/(2^(n))) is