Home
Class 10
MATHS
Evaluate: lim(x rarr 1) (f(x)-f(1))/(x-1...

Evaluate: `lim_(x rarr 1) (f(x)-f(1))/(x-1), "where" f(x) = x^(2)-2x`.

A

-1

B

0

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
B

Calculate f(1) substitute f(x) and f(1), factorise numerator, then cancel the common factor and substitute x = 1.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL-2|15 Videos
  • LIMITS

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL-3|15 Videos
  • LIMITS

    PEARSON IIT JEE FOUNDATION|Exercise ESSA TYPE QUESTIONS|5 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application Level -3|15 Videos
  • LINEAR PROGRAMMING

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x rarr 2)(f(x)-f(2))/(x-2), "where" f(x)=x^(2)-4x

Evaluate lim_(x rarr1)(f(x)-f(1))/(x-1), where f(x)=x^(2)-2x

lim_(x rarr oo) (1+f(x))^(1/f(x))

lim_(x rarr1)f(x), where f(x)={x^(2)-1,x 1

lim_(x rarr0)f(x)and(lim)_(x rarr1)f(x), where f(x)=[2x+3,x 0

Find lim_(x rarr0)f(x) and lim_(x rarr1)f(x), where f(x)=[(2x+3),x 0

If lim_(x rarr4)(f(x)-5)/(x-2)=1 then lim_(x rarr4)f(x)=

Find the value of 'a' such that lim_(x rarr 2) f(x) exists, where f(x) = {(ax+5, x lt 2),(x-1, x ge 2):}

Find (lim)_(x rarr1)f(x), where f(x)=[x^(2)-1,x 1

If f(x)=(1)/(x), evaluate lim_(h rarr0)(f(x+h)-f(x))/(h)