Home
Class 12
MATHS
int(1)/(1-sinx) dx...

`int(1)/(1-sinx) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{1}{1 - \sin x} \, dx\), we will follow these steps: ### Step 1: Rationalize the Denominator We start with the integral: \[ \int \frac{1}{1 - \sin x} \, dx \] To rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator, which is \(1 + \sin x\): \[ \int \frac{1}{1 - \sin x} \cdot \frac{1 + \sin x}{1 + \sin x} \, dx \] This simplifies to: \[ \int \frac{1 + \sin x}{(1 - \sin x)(1 + \sin x)} \, dx \] ### Step 2: Simplify the Denominator Using the identity \(a^2 - b^2 = (a - b)(a + b)\), we can simplify the denominator: \[ (1 - \sin x)(1 + \sin x) = 1 - \sin^2 x = \cos^2 x \] Thus, the integral becomes: \[ \int \frac{1 + \sin x}{\cos^2 x} \, dx \] ### Step 3: Split the Integral Now we can separate the integral into two parts: \[ \int \frac{1}{\cos^2 x} \, dx + \int \frac{\sin x}{\cos^2 x} \, dx \] This can be written as: \[ \int \sec^2 x \, dx + \int \tan x \sec x \, dx \] ### Step 4: Integrate Each Part 1. The integral of \(\sec^2 x\) is: \[ \int \sec^2 x \, dx = \tan x \] 2. The integral of \(\tan x \sec x\) is: \[ \int \tan x \sec x \, dx = \sec x \] ### Step 5: Combine the Results Combining both results, we have: \[ \tan x + \sec x + C \] where \(C\) is the constant of integration. ### Final Answer Thus, the final answer for the integral \(\int \frac{1}{1 - \sin x} \, dx\) is: \[ \tan x + \sec x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(cosx-sinx)dx is equal to

Evaluate : int(tan^(2)x)dx Evalauate: int1/(1+sinx) dx

int ((1+ sinx))/((1- sinx)) dx=?

int(1)/(sinx-cosx)dx=

int(cotx)/(1+sinx)dx=

Evaluate: int1/(cosx-sinx)\ dx

(i) int (cosx)/(1+cosx)dx , (ii) int (sinx)/((1-sinx))dx

int(sinx)/(1+sin x) dx