Home
Class 12
MATHS
int(tan x + cos x)^(2) dx...

`int(tan x + cos x)^(2) dx `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (\tan x + \cot x)^2 \, dx \), we will follow these steps: ### Step 1: Expand the integrand Using the identity \( (a + b)^2 = a^2 + b^2 + 2ab \), we can expand \( (\tan x + \cot x)^2 \): \[ (\tan x + \cot x)^2 = \tan^2 x + \cot^2 x + 2 \tan x \cot x \] ### Step 2: Simplify the expression Recall that \( \tan x \cot x = 1 \). Therefore, we can simplify: \[ 2 \tan x \cot x = 2 \] So, we have: \[ \tan^2 x + \cot^2 x + 2 \] ### Step 3: Rewrite the integral Now, we can rewrite the integral: \[ \int (\tan^2 x + \cot^2 x + 2) \, dx = \int \tan^2 x \, dx + \int \cot^2 x \, dx + \int 2 \, dx \] ### Step 4: Integrate each term 1. **Integrate \( \tan^2 x \)**: \[ \tan^2 x = \sec^2 x - 1 \implies \int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx = \int \sec^2 x \, dx - \int 1 \, dx \] The integral of \( \sec^2 x \) is \( \tan x \), and the integral of 1 is \( x \): \[ \int \tan^2 x \, dx = \tan x - x \] 2. **Integrate \( \cot^2 x \)**: \[ \cot^2 x = \csc^2 x - 1 \implies \int \cot^2 x \, dx = \int (\csc^2 x - 1) \, dx = \int \csc^2 x \, dx - \int 1 \, dx \] The integral of \( \csc^2 x \) is \( -\cot x \): \[ \int \cot^2 x \, dx = -\cot x - x \] 3. **Integrate \( 2 \)**: \[ \int 2 \, dx = 2x \] ### Step 5: Combine the results Now, we combine all the integrals: \[ \int (\tan^2 x + \cot^2 x + 2) \, dx = (\tan x - x) + (-\cot x - x) + 2x \] Simplifying this gives: \[ \tan x - \cot x + 0 \] ### Final Answer Thus, the final result of the integral is: \[ \int (\tan x + \cot x)^2 \, dx = \tan x - \cot x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(tan x+cos x)dx

int (tan x +cot x)^(2)dx

int((tan x)/(cos x))^(4)dx

Evaluate: (i) int(tan x+cot x)^(2)dx (ii) int(1-cos2x)/(1+cos2x)dx

int (ln (tan x)) / (sin x cos x) dx

int (sqrt (tan x)) / (sin x cos x) * dx

int (sqrt (tan x)) / (sin x cos x) dx

int(sec x+tan x)^(2)dx

int(cot x-tan x)^(2)dx