Home
Class 12
MATHS
intsqrt(1-cos 2x) dx...

`intsqrt(1-cos 2x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{1 - \cos 2x} \, dx \), we will follow these steps: ### Step 1: Simplify the expression under the square root We start with the expression \( 1 - \cos 2x \). We can use the trigonometric identity: \[ \cos 2x = 1 - 2\sin^2 x \] Thus, \[ 1 - \cos 2x = 1 - (1 - 2\sin^2 x) = 2\sin^2 x \] ### Step 2: Substitute the simplified expression into the integral Now we can substitute this back into our integral: \[ \int \sqrt{1 - \cos 2x} \, dx = \int \sqrt{2\sin^2 x} \, dx \] ### Step 3: Simplify the square root The square root of \( 2\sin^2 x \) can be simplified as follows: \[ \sqrt{2\sin^2 x} = \sqrt{2} \cdot \sqrt{\sin^2 x} = \sqrt{2} \cdot |\sin x| \] Assuming \( x \) is in a range where \( \sin x \) is non-negative (for example, \( 0 \leq x \leq \pi \)), we can write: \[ \sqrt{2\sin^2 x} = \sqrt{2} \sin x \] ### Step 4: Substitute back into the integral Now we substitute this back into the integral: \[ \int \sqrt{2} \sin x \, dx \] ### Step 5: Factor out the constant We can factor out \( \sqrt{2} \): \[ \sqrt{2} \int \sin x \, dx \] ### Step 6: Integrate \( \sin x \) The integral of \( \sin x \) is: \[ \int \sin x \, dx = -\cos x \] ### Step 7: Combine the results Putting it all together, we have: \[ \sqrt{2} \int \sin x \, dx = \sqrt{2} (-\cos x) + C = -\sqrt{2} \cos x + C \] ### Final Result Thus, the final result of the integral is: \[ \int \sqrt{1 - \cos 2x} \, dx = -\sqrt{2} \cos x + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

intsqrt(1+sin 2x) dx

intsqrt (1+cos2x)dx

Knowledge Check

  • intsqrt(1+cos5x)dx=

    A
    `(2)/(5)sin((5x)/(2))+c`
    B
    `(sqrt2)/(5)sin((5x)/(2))+c`
    C
    `(2sqrt2)/(5)sin((5x)/(2))+c`
    D
    `(2sqrt2)/(5)cos((5x)/(2))+c`
  • intsqrt(1+cos x )dx is equal to

    A
    `2sqrt2 cos.(x)/(2)+C`
    B
    `2sqrt2 sin.(x)/(2)+C`
    C
    `sqrt2 cos .(x)/(2)+C`
    D
    `sqrt2sin.(x)/(2)+C`
  • intsqrt(1+sin2x)dx=

    A
    `sinx +cosx+c`
    B
    `sinx -cosx+c`
    C
    `cosx -sinx+c`
    D
    `-cosx -sinx+c`
  • Similar Questions

    Explore conceptually related problems

    (i) int sqrt(1+cos2x) dx , (ii) intsqrt(1-cos2x)dx

    Evaluate : intsqrt(1-sin2x)dx .

    Evaluate: intsqrt(cosec^2x-2)dx

    intsqrt(1-sin7x)dx=

    intsqrt((1-cos2x)/(1+cos 2x))dx=