Home
Class 12
MATHS
int(1+cos 2x)/(1-cos 2x)dx...

`int(1+cos 2x)/(1-cos 2x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 + \cos 2x}{1 - \cos 2x} \, dx \), we will use trigonometric identities and integration techniques. Here’s a step-by-step solution: ### Step 1: Simplify the integrand using trigonometric identities We know the following trigonometric identities: - \( 1 + \cos 2x = 2 \cos^2 x \) - \( 1 - \cos 2x = 2 \sin^2 x \) Using these identities, we can rewrite the integrand: \[ \frac{1 + \cos 2x}{1 - \cos 2x} = \frac{2 \cos^2 x}{2 \sin^2 x} = \frac{\cos^2 x}{\sin^2 x} = \cot^2 x \] ### Step 2: Rewrite the integral Now, we can rewrite the integral: \[ \int \frac{1 + \cos 2x}{1 - \cos 2x} \, dx = \int \cot^2 x \, dx \] ### Step 3: Use the identity for cotangent Recall that: \[ \cot^2 x = \csc^2 x - 1 \] Thus, we can express the integral as: \[ \int \cot^2 x \, dx = \int (\csc^2 x - 1) \, dx \] ### Step 4: Integrate term by term Now, we can integrate each term separately: \[ \int \cot^2 x \, dx = \int \csc^2 x \, dx - \int 1 \, dx \] The integrals are: - \( \int \csc^2 x \, dx = -\cot x \) - \( \int 1 \, dx = x \) Putting it all together: \[ \int \cot^2 x \, dx = -\cot x - x + C \] ### Final Answer Thus, the final result for the integral \( \int \frac{1 + \cos 2x}{1 - \cos 2x} \, dx \) is: \[ -\cot x - x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: (i) int((1-cos2x)/(1+cos2x))dx (ii) int((1+cos2x)/(1-cos2x))dx

int(cos x)/(1-cos^(2)x)dx

int(cos x)/(1-cos^(2)x)dx

Evaluate the following integrals : int(1-cos2x)/(1+cos2x)dx

int(1+cos^(2)x)/(1-cos2x)dx=

int(1+cos^(2)x)/(1-cos2x)*dx

Evaluate int(1+cos^(2)x)/(1+cos 2x)dx

int(cos x)/(1-cos x)dx

int( sin 2x)/(1-cos^(2)x)dx

Evaluate: (i) int(tan x+cot x)^(2)dx (ii) int(1-cos2x)/(1+cos2x)dx