Home
Class 12
MATHS
(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x...

`(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### Part (i): Evaluate the integral \[ I_1 = \int \frac{\cos^3 x + \sin^3 x}{\sin^2 x \cos^2 x} \, dx \] **Step 1: Rewrite the numerator using the identity for cubes.** \[ \cos^3 x + \sin^3 x = (\cos x + \sin x)(\cos^2 x - \cos x \sin x + \sin^2 x) \] Since \(\cos^2 x + \sin^2 x = 1\), we can simplify: \[ \cos^3 x + \sin^3 x = (\cos x + \sin x)(1 - \cos x \sin x) \] **Step 2: Substitute this back into the integral.** \[ I_1 = \int \frac{(\cos x + \sin x)(1 - \cos x \sin x)}{\sin^2 x \cos^2 x} \, dx \] **Step 3: Split the integral into two parts.** \[ I_1 = \int \frac{\cos x + \sin x}{\sin^2 x \cos^2 x} \, dx - \int \frac{(\cos x + \sin x) \cos x \sin x}{\sin^2 x \cos^2 x} \, dx \] **Step 4: Simplify each integral.** The first integral becomes: \[ \int \frac{\cos x + \sin x}{\sin^2 x \cos^2 x} \, dx = \int \left( \frac{\cos x}{\sin^2 x \cos^2 x} + \frac{\sin x}{\sin^2 x \cos^2 x} \right) \, dx \] This can be simplified to: \[ \int \left( \frac{1}{\sin^2 x} + \frac{1}{\cos^2 x} \right) \, dx = \int \csc^2 x \, dx + \int \sec^2 x \, dx \] **Step 5: Integrate.** The integrals yield: \[ -\cot x + \tan x + C \] Thus, the final answer for part (i) is: \[ I_1 = -\cot x + \tan x + C \] ### Part (ii): Evaluate the integral \[ I_2 = \int \frac{\cos 2x}{\cos^2 x \sin^2 x} \, dx \] **Step 1: Use the double angle identity for cosine.** \[ \cos 2x = \cos^2 x - \sin^2 x \] Substituting this into the integral gives: \[ I_2 = \int \frac{\cos^2 x - \sin^2 x}{\cos^2 x \sin^2 x} \, dx \] **Step 2: Split the integral.** \[ I_2 = \int \frac{\cos^2 x}{\cos^2 x \sin^2 x} \, dx - \int \frac{\sin^2 x}{\cos^2 x \sin^2 x} \, dx \] This simplifies to: \[ I_2 = \int \frac{1}{\sin^2 x} \, dx - \int \frac{1}{\cos^2 x} \, dx \] **Step 3: Integrate each part.** The integrals yield: \[ -\cot x + \tan x + C \] Thus, the final answer for part (ii) is: \[ I_2 = -\cot x + \tan x + C \] ### Summary of Solutions: 1. For part (i): \[ I_1 = -\cot x + \tan x + C \] 2. For part (ii): \[ I_2 = -\cot x + \tan x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(cos^(2) x-3 sin^(2) x)dx

int(cos2x)/((cos x+sin x)^(2))dx

int(a sin^(3)x-b cos^(3)x)/(sin^(2)x cos^(2)x)dx

int(a sin^(3)x+b cos^(3)x)/(sin^(2)x cos^(2)x)dx

int(sin^(3)x-cos^(3)x)/(sin^(2)x cos^(2)x)dx

int(cos 2x-sin 2x)/(cos2x+sin2x)dx

int(cos^(3)x)/((1+sin^(2)x)^(2))dx

int (dx)/((cos ^(2)x-3sin^(2)x))=?

Evaluate: ( i int(sin^(3)x-cos^(3)x)/(sin^(2)x cos^(2)x)dx (ii) int(5cos^(3)x+6sin^(3)x)/(2sin^(2)x cos^(2)x)dx

int(dx)/(3sin^(2)x+4cos^(2)x)