Home
Class 12
MATHS
int((x+1)(2x-3))/(x) dx...

`int((x+1)(2x-3))/(x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{(x+1)(2x-3)}{x} \, dx\), we will follow these steps: ### Step 1: Expand the Numerator First, we need to expand the numerator \((x+1)(2x-3)\). \[ (x+1)(2x-3) = x \cdot 2x + x \cdot (-3) + 1 \cdot 2x + 1 \cdot (-3) = 2x^2 - 3x + 2x - 3 = 2x^2 - x - 3 \] ### Step 2: Rewrite the Integral Now we can rewrite the integral using the expanded numerator: \[ \int \frac{2x^2 - x - 3}{x} \, dx \] ### Step 3: Simplify the Fraction Next, we simplify the fraction by dividing each term in the numerator by \(x\): \[ \int \left( \frac{2x^2}{x} - \frac{x}{x} - \frac{3}{x} \right) \, dx = \int (2x - 1 - \frac{3}{x}) \, dx \] ### Step 4: Separate the Integral Now we can separate the integral into three simpler integrals: \[ \int (2x - 1 - \frac{3}{x}) \, dx = \int 2x \, dx - \int 1 \, dx - 3 \int \frac{1}{x} \, dx \] ### Step 5: Integrate Each Term Now we will integrate each term separately: 1. \(\int 2x \, dx = 2 \cdot \frac{x^2}{2} = x^2\) 2. \(\int 1 \, dx = x\) 3. \(-3 \int \frac{1}{x} \, dx = -3 \ln |x|\) Putting it all together, we have: \[ x^2 - x - 3 \ln |x| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{(x+1)(2x-3)}{x} \, dx = x^2 - x - 3 \ln |x| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Find int((x-1)/((x-2)(x-3)))dx

Evaluate int (x-1)/((x-2)(x-3)) dx

int(2x+1)/((x+2)(x-3))dx

int (x^2-1)(x^3-3x)^2 dx

Evaluate: int(2x+1)/((x-2)(x-3))dx

int(x-1)/(x^(2)-2x-3)dx

int(2x+1)/(x(x+3))dx

Evaluate: int(x^3)/((x-1)(x-2)(x-3))\ dx

Evaluate: int(x^2)/((x-1)(x-2)(x-3))\ dx

int((2x-1)^(2)(x+3))/(sqrt(x))dx