Home
Class 12
MATHS
int(sinx)/(1+sin x) dx...

`int(sinx)/(1+sin x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x}{1 + \sin x} \, dx \), we can use the method of rationalization. Here’s a step-by-step solution: ### Step 1: Rationalize the Integrand We start by multiplying the integrand by a form of 1, specifically \( \frac{1 - \sin x}{1 - \sin x} \): \[ \int \frac{\sin x}{1 + \sin x} \, dx = \int \frac{\sin x (1 - \sin x)}{(1 + \sin x)(1 - \sin x)} \, dx \] ### Step 2: Simplify the Denominator The denominator can be simplified using the difference of squares: \[ (1 + \sin x)(1 - \sin x) = 1 - \sin^2 x = \cos^2 x \] Thus, we rewrite the integral: \[ \int \frac{\sin x (1 - \sin x)}{\cos^2 x} \, dx \] ### Step 3: Expand the Numerator Now, we expand the numerator: \[ \sin x (1 - \sin x) = \sin x - \sin^2 x \] So the integral becomes: \[ \int \left( \frac{\sin x}{\cos^2 x} - \frac{\sin^2 x}{\cos^2 x} \right) \, dx \] ### Step 4: Split the Integral We can split the integral into two separate integrals: \[ \int \frac{\sin x}{\cos^2 x} \, dx - \int \frac{\sin^2 x}{\cos^2 x} \, dx \] ### Step 5: Substitute for Each Integral 1. For the first integral, we know that: \[ \frac{\sin x}{\cos^2 x} = \tan x \sec x \] Therefore: \[ \int \frac{\sin x}{\cos^2 x} \, dx = \int \tan x \sec x \, dx \] The integral of \( \tan x \sec x \) is \( \sec x \). 2. For the second integral: \[ \frac{\sin^2 x}{\cos^2 x} = \tan^2 x \] Thus: \[ \int \frac{\sin^2 x}{\cos^2 x} \, dx = \int \tan^2 x \, dx \] We know that \( \tan^2 x = \sec^2 x - 1 \), so: \[ \int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx = \tan x - x \] ### Step 6: Combine the Results Now we combine the results from both integrals: \[ \sec x - (\tan x - x) + C = \sec x - \tan x + x + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\sin x}{1 + \sin x} \, dx = \sec x - \tan x + x + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int(sinx)/(sin 2x)dx

int(sin(x-a))/(sinx)dx

Knowledge Check

  • int(sinx)/((1+sinx))dx=?

    A
    `tanx+secx+C`
    B
    `tanx-secx+C`
    C
    `(1)/(2)"tan"(x)/(2)+C`
    D
    none of these
  • int(sinx)/((1+sinx))dx=?

    A
    `x+tanx-secx+C`
    B
    `x-tanx-secx+C`
    C
    `x-tanx+secx+C`
    D
    none of these
  • int(sinx)/((1-sinx))dx=?

    A
    `-x+secx-tan+C`
    B
    `x+cosx-sinx+C`
    C
    `-log|1-sinx|+C`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Evaluate the following integrals: int (sinx)/(sin2x)dx

    int(sinx)/(1-sin^(2)x)dx=

    (i) int (sin 2x)/((1+sin x)(2-sinx))dx (ii) int (cos x)/((1+sinx) (2-sinx))dx (iii) int (cos x)/((1-sinx)^2(2+sinx)) dx (iv) int ((3sinx-2)cosx)/(13-cos^2x-7 sinx) dx (v) int (sin theta)/((4+ cos^2 theta ) (2-sin^2 theta)) d theta.

    int(sinx)/(sin(x-a))dx-int(cosx)/(cos(x-a))dx=

    int (sin2x)/(sinx )dx = ?