Home
Class 12
MATHS
(i) int ((1+x)^(3))/(sqrt(x))dx " ...

`(i) int ((1+x)^(3))/(sqrt(x))dx " "(ii) int((1+x)^(3))/(x^(4)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### Part (i): \(\int \frac{(1+x)^3}{\sqrt{x}} \, dx\) 1. **Expand \((1+x)^3\)**: \[ (1+x)^3 = 1 + 3x + 3x^2 + x^3 \] 2. **Rewrite the integral**: \[ \int \frac{(1+x)^3}{\sqrt{x}} \, dx = \int \frac{1 + 3x + 3x^2 + x^3}{\sqrt{x}} \, dx \] 3. **Express \(\sqrt{x}\) as \(x^{1/2}\)**: \[ \int \frac{1 + 3x + 3x^2 + x^3}{x^{1/2}} \, dx \] 4. **Separate the integral**: \[ = \int \left( x^{-1/2} + 3x^{1/2} + 3x^{3/2} + x^{5/2} \right) \, dx \] 5. **Integrate term by term**: - For \(x^{-1/2}\): \[ \int x^{-1/2} \, dx = 2x^{1/2} \] - For \(3x^{1/2}\): \[ \int 3x^{1/2} \, dx = 3 \cdot \frac{2}{3} x^{3/2} = 2x^{3/2} \] - For \(3x^{3/2}\): \[ \int 3x^{3/2} \, dx = 3 \cdot \frac{2}{5} x^{5/2} = \frac{6}{5} x^{5/2} \] - For \(x^{5/2}\): \[ \int x^{5/2} \, dx = \frac{2}{7} x^{7/2} \] 6. **Combine the results**: \[ = 2x^{1/2} + 2x^{3/2} + \frac{6}{5} x^{5/2} + \frac{2}{7} x^{7/2} + C \] ### Final Answer for Part (i): \[ \int \frac{(1+x)^3}{\sqrt{x}} \, dx = 2x^{1/2} + 2x^{3/2} + \frac{6}{5} x^{5/2} + \frac{2}{7} x^{7/2} + C \] --- ### Part (ii): \(\int \frac{(1+x)^3}{x^4} \, dx\) 1. **Expand \((1+x)^3\)** (same as before): \[ (1+x)^3 = 1 + 3x + 3x^2 + x^3 \] 2. **Rewrite the integral**: \[ \int \frac{(1+x)^3}{x^4} \, dx = \int \frac{1 + 3x + 3x^2 + x^3}{x^4} \, dx \] 3. **Separate the integral**: \[ = \int \left( x^{-4} + 3x^{-3} + 3x^{-2} + x^{-1} \right) \, dx \] 4. **Integrate term by term**: - For \(x^{-4}\): \[ \int x^{-4} \, dx = -\frac{1}{3} x^{-3} \] - For \(3x^{-3}\): \[ \int 3x^{-3} \, dx = -\frac{3}{2} x^{-2} \] - For \(3x^{-2}\): \[ \int 3x^{-2} \, dx = -3x^{-1} \] - For \(x^{-1}\): \[ \int x^{-1} \, dx = \ln |x| \] 5. **Combine the results**: \[ = -\frac{1}{3} x^{-3} - \frac{3}{2} x^{-2} - 3x^{-1} + \ln |x| + C \] ### Final Answer for Part (ii): \[ \int \frac{(1+x)^3}{x^4} \, dx = -\frac{1}{3} x^{-3} - \frac{3}{2} x^{-2} - 3x^{-1} + \ln |x| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int((x-1)^(3))/(sqrt(x))dx

(1) =int(x^(3))/(sqrt(1-x^(4)))dx

Evaluate: ( i ) int((1+x)^(3))/(sqrt(x))dx (ii) int{x^(2)+e^(log x)+((e)/(2))^(x)}dx

Evaluate: (i) int(x sin^(-1)x^(2))/(sqrt(1-x^(4)))dx (ii) int x^(3)sin(x^(4)+1)dx

Evaluate: (i) int((1+sqrt(x))^(2))/(sqrt(x))dx (ii) int sqrt(1+e^(x))e^(x)dx

int(x^(2))/(sqrt(1-x))dx (ii) int x(1-x)^(23)dx

Evaluate: (i) int(a^(x))/(sqrt(1-a^(2x)))dx (ii) int(2x)/(sqrt(1-x^(2)-x^(4)))dx

int(x^(2))/(sqrt(3x+4))dx (ii) int(2x-1)/((x-1)^(2))dx

Evaluate: (i) int(cos sqrt(x))/(sqrt(x))dx (ii) int((sin(tan^(-1)x))/(1+x^(2))dx