Home
Class 12
MATHS
int(1)/(3+(2-3x)^(2)) dx...

`int(1)/(3+(2-3x)^(2)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{3 + (2 - 3x)^2} \, dx \), we can follow these steps: ### Step 1: Identify the form of the integral We recognize that the integral resembles the form \( \int \frac{1}{a^2 + u^2} \, du \), where \( a = \sqrt{3} \) and \( u = 2 - 3x \). ### Step 2: Rewrite the integral We can rewrite the integral as: \[ \int \frac{1}{3 + (2 - 3x)^2} \, dx = \int \frac{1}{\sqrt{3}^2 + (2 - 3x)^2} \, dx \] ### Step 3: Substitute for \( u \) Let \( u = 2 - 3x \). Then, differentiate \( u \) with respect to \( x \): \[ \frac{du}{dx} = -3 \quad \Rightarrow \quad dx = \frac{du}{-3} \] ### Step 4: Substitute \( dx \) in the integral Substituting \( u \) and \( dx \) into the integral gives: \[ \int \frac{1}{\sqrt{3}^2 + u^2} \cdot \frac{du}{-3} = -\frac{1}{3} \int \frac{1}{\sqrt{3}^2 + u^2} \, du \] ### Step 5: Apply the formula for integration Using the formula \( \int \frac{1}{a^2 + u^2} \, du = \frac{1}{a} \tan^{-1} \left( \frac{u}{a} \right) + C \), we find: \[ -\frac{1}{3} \cdot \frac{1}{\sqrt{3}} \tan^{-1} \left( \frac{u}{\sqrt{3}} \right) + C = -\frac{1}{3\sqrt{3}} \tan^{-1} \left( \frac{u}{\sqrt{3}} \right) + C \] ### Step 6: Substitute back for \( u \) Substituting back \( u = 2 - 3x \): \[ -\frac{1}{3\sqrt{3}} \tan^{-1} \left( \frac{2 - 3x}{\sqrt{3}} \right) + C \] ### Final Answer Thus, the integral evaluates to: \[ \int \frac{1}{3 + (2 - 3x)^2} \, dx = -\frac{1}{3\sqrt{3}} \tan^{-1} \left( \frac{2 - 3x}{\sqrt{3}} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/((2-3x)^(4))+dx=?

"int(1)/((2-3x)^((3)/(2)))dx

"int_(1)^(3)(2x^(2)+3)dx

int(1)/((x^(2)+3)^(3))dx

The area of the region for which is int_(1)^(3)(3-2x-x^(2))dx(b)int_(0)^(3)(3-2x-x^(2))dx int_(0)^(1)(3-2x-x^(2))dx (d) int_(-1)^(3)(3-2x-x^(2))dx*00

int(1)/(2+3x)dx

int(x^(2))/(sqrt(3x+4))dx (ii) int(2x-1)/((x-1)^(2))dx

int (x^2-1)(x^3-3x)^2 dx

int(3x+1)/(2x^(2)+x-1)dx

Evaluate the following integrals as limit of sums: int_(1)^(3)(3x^(2)-2x+4)dx