Home
Class 12
MATHS
int cos 4x. cos 2x dx...

`int cos 4x. cos 2x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos 4x \cdot \cos 2x \, dx \), we can use the product-to-sum identities for cosine. The relevant identity is: \[ \cos A \cdot \cos B = \frac{1}{2} \left( \cos(A + B) + \cos(A - B) \right) \] ### Step-by-step Solution: 1. **Identify A and B**: Here, let \( A = 4x \) and \( B = 2x \). 2. **Apply the product-to-sum identity**: Using the identity, we have: \[ \cos 4x \cdot \cos 2x = \frac{1}{2} \left( \cos(4x + 2x) + \cos(4x - 2x) \right) \] 3. **Simplify the expression**: This simplifies to: \[ \cos 4x \cdot \cos 2x = \frac{1}{2} \left( \cos(6x) + \cos(2x) \right) \] 4. **Set up the integral**: Now we can rewrite the integral: \[ \int \cos 4x \cdot \cos 2x \, dx = \int \frac{1}{2} \left( \cos(6x) + \cos(2x) \right) \, dx \] 5. **Factor out the constant**: Factor out \( \frac{1}{2} \): \[ = \frac{1}{2} \int \left( \cos(6x) + \cos(2x) \right) \, dx \] 6. **Integrate each term**: Now we can integrate each term separately: \[ \int \cos(6x) \, dx = \frac{1}{6} \sin(6x) + C_1 \] \[ \int \cos(2x) \, dx = \frac{1}{2} \sin(2x) + C_2 \] 7. **Combine the results**: Therefore, we have: \[ \frac{1}{2} \left( \frac{1}{6} \sin(6x) + \frac{1}{2} \sin(2x) \right) + C \] Simplifying this gives: \[ = \frac{1}{12} \sin(6x) + \frac{1}{4} \sin(2x) + C \] ### Final Answer: \[ \int \cos 4x \cdot \cos 2x \, dx = \frac{1}{12} \sin(6x) + \frac{1}{4} \sin(2x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate int cos 4x cos 7 dx

int cos 4x cos x dx = ?

I= int cos 4 x cos 7 x dx .

int cos 2x . cos 4x . cos 6x dx

If int cos x cos 2x cos 3x dx = A_(1)sin 2x + A_(2) sin 4x + A_(3) sin 6x + C then

int x cos 2x sin 4x dx

Evaluate int sin x cos x cos2x cos 4x cos 8x dx

int cos 2x.cos 4x. Cos 6x dx is equal to

int (sin 4x)/(cos 2x) dx