Home
Class 12
MATHS
inte^(4-3x) dx...

`inte^(4-3x) dx `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{4 - 3x} \, dx \), we can follow these steps: ### Step 1: Identify the function to integrate We have the function \( e^{4 - 3x} \). ### Step 2: Use substitution Let \( u = 4 - 3x \). Then, we need to find \( du \): \[ du = -3 \, dx \quad \Rightarrow \quad dx = -\frac{1}{3} \, du \] ### Step 3: Substitute in the integral Now, substituting \( u \) and \( dx \) into the integral: \[ \int e^{4 - 3x} \, dx = \int e^u \left(-\frac{1}{3} \, du\right) = -\frac{1}{3} \int e^u \, du \] ### Step 4: Integrate \( e^u \) The integral of \( e^u \) is simply \( e^u \): \[ -\frac{1}{3} \int e^u \, du = -\frac{1}{3} e^u + C \] ### Step 5: Substitute back to original variable Now, substitute back \( u = 4 - 3x \): \[ -\frac{1}{3} e^{4 - 3x} + C \] ### Final Answer Thus, the integral \( \int e^{4 - 3x} \, dx \) is: \[ -\frac{1}{3} e^{4 - 3x} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int e ^(4x -3) dx = .....................+c

int 2^(3x+4) dx

int 5^(3x-4)dx

Evaluate inte^(3x+4)dx .

int e^((3x+4))dx

int (4e^(3x) +1)dx

int 1/(3x+4) dx

int (3x+4)^2 dx

int(7-3x)^(4)dx