Home
Class 12
MATHS
int(1dx)/((x-2)sqrt(x^(2)-4x+3)...

`int(1dx)/((x-2)sqrt(x^(2)-4x+3) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1}{(x-2) \sqrt{x^2 - 4x + 3}} \, dx, \] we can follow these steps: ### Step 1: Simplify the expression under the square root First, we simplify the expression \(x^2 - 4x + 3\): \[ x^2 - 4x + 3 = (x-2)^2 - 1. \] This can be verified by expanding \((x-2)^2\): \[ (x-2)^2 = x^2 - 4x + 4. \] Thus, \[ (x-2)^2 - 1 = x^2 - 4x + 3. \] ### Step 2: Rewrite the integral Now, substituting this back into the integral, we have: \[ \int \frac{1}{(x-2) \sqrt{(x-2)^2 - 1}} \, dx. \] ### Step 3: Make a substitution Let \(t = x - 2\). Then, \(dx = dt\). The integral becomes: \[ \int \frac{1}{t \sqrt{t^2 - 1}} \, dt. \] ### Step 4: Use the known integral formula The integral \[ \int \frac{1}{t \sqrt{t^2 - 1}} \, dt \] is a standard integral that evaluates to: \[ \sec^{-1} |t| + C. \] ### Step 5: Substitute back to the original variable Now, substituting \(t = x - 2\) back into the expression, we get: \[ \sec^{-1} |x - 2| + C. \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{(x-2) \sqrt{x^2 - 4x + 3}} \, dx = \sec^{-1} |x - 2| + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/((x-2)sqrt(x^(2)-4x+3))dx

int((x-2 )dx)/(sqrt(x^(2)-4x+3)

int((2x-1)dx)/(sqrt(x^(2)-x+3))

int(dx)/(sqrt(4x^(2)-3x))

int(dx)/(sqrt(4x^(2)+3))

int(dx)/(sqrt(1+4x^(2)))

int(dx)/(sqrt(1+4x^(2)))

int(dx)/(sqrt(4x^(2)+1))

int 1/((x^2+4)sqrt(x^2-4))dx

int(1)/(sqrt(4x^(2)-x+4))dx