Home
Class 12
MATHS
int(1)/(sqrt(1-(3x+2)^(2)))dx...

`int(1)/(sqrt(1-(3x+2)^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sqrt{1 - (3x + 2)^2}} \, dx \), we can use the formula for the integral of the form \( \int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \left( \frac{x}{a} \right) + C \). ### Step-by-Step Solution: 1. **Identify the Form**: We need to rewrite the integral in a suitable form. We have: \[ \int \frac{1}{\sqrt{1 - (3x + 2)^2}} \, dx \] Here, we can see that \( a^2 = 1 \) and \( x = 3x + 2 \). 2. **Identify \( a \) and \( x \)**: From the above, we have: \[ a = 1 \quad \text{and} \quad x = 3x + 2 \] 3. **Differentiate \( x \)**: We need to find \( \frac{dx}{d(3x + 2)} \): \[ \frac{dx}{d(3x + 2)} = 3 \quad \Rightarrow \quad dx = 3 \, d(3x + 2) \] 4. **Substitute in the Integral**: Substitute \( u = 3x + 2 \): \[ \int \frac{1}{\sqrt{1 - u^2}} \cdot \frac{1}{3} \, du \] 5. **Apply the Integral Formula**: Using the formula \( \int \frac{1}{\sqrt{1 - u^2}} \, du = \sin^{-1}(u) + C \): \[ \frac{1}{3} \sin^{-1}(u) + C \] 6. **Back Substitute \( u \)**: Replace \( u \) back with \( 3x + 2 \): \[ \frac{1}{3} \sin^{-1}(3x + 2) + C \] ### Final Answer: Thus, the solution to the integral is: \[ \int \frac{1}{\sqrt{1 - (3x + 2)^2}} \, dx = \frac{1}{3} \sin^{-1}(3x + 2) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(3x-2))dx

int(dx)/(sqrt(1+2x-3x^(2)))

int(1)/(sqrt((x^(2)+3x+1)))dx

Evaluate: (i) int(1)/(sqrt(a^(2)-b^(2)x^(2)))dx (ii) int(1)/(sqrt((2-x)^(2)+1))dx

int(dx)/(sqrt((x-3)^(2)-1))

int (1)/(sqrt(3x^(2) +x))dx

Evaluate: int(1)/(sqrt(3-2x-x^(2)))dx

" (a) "int(dx)/(sqrt((3-x)^(2)+1))

int(x+1)/(sqrt(2x^(2)+x-3))dx

int(1)/(sqrt2+x-3x)dx