Home
Class 12
MATHS
int(sec^(2)x)/(sqrt(tanx))dx...

`int(sec^(2)x)/(sqrt(tanx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sec^2 x}{\sqrt{\tan x}} \, dx\), we can use the substitution method. Here are the steps: ### Step 1: Substitution Let \( t = \tan x \). Then, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = \sec^2 x \quad \Rightarrow \quad dt = \sec^2 x \, dx \] From this, we can express \( dx \) in terms of \( dt \): \[ dx = \frac{dt}{\sec^2 x} \] ### Step 2: Rewrite the Integral Substituting \( t = \tan x \) into the integral, we have: \[ \int \frac{\sec^2 x}{\sqrt{\tan x}} \, dx = \int \frac{\sec^2 x}{\sqrt{t}} \cdot \frac{dt}{\sec^2 x} \] The \(\sec^2 x\) terms cancel out: \[ = \int \frac{1}{\sqrt{t}} \, dt \] ### Step 3: Integrate Now, we can integrate \(\frac{1}{\sqrt{t}}\): \[ \int \frac{1}{\sqrt{t}} \, dt = 2\sqrt{t} + C \] ### Step 4: Substitute Back Now, we substitute back \( t = \tan x \): \[ 2\sqrt{t} + C = 2\sqrt{\tan x} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\sec^2 x}{\sqrt{\tan x}} \, dx = 2\sqrt{\tan x} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7d|38 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Integrate : int(sec^(2)x)/(sqrt(1+tan x))dx

int(sec^(2)x)/(sqrt(1+tan x))dx

int(sec^(2)x)/((1+tanx))dx

int(sec^(2)x)/(sqrt(1-tan^(2)x))dx=?

Evaluate: int(sec^(2)x)/(1+tanx)dx

Evaluate: int(sec^(2)sqrt(x))/(sqrt(x))dx

Evaluate: int(sec^(2)sqrt(x))/(sqrt(x))dx

int(sec^(2)x+1)/(x+tanx)dx

Evaluate: (i) int(sec^(2)sqrt(x))/(sqrt(x))dx (ii) int tan^(3)2x sec2xdx

int(tan sqrt(x)sec^(2)sqrt(x))/(sqrt(x))dx