Home
Class 12
MATHS
int(e^(x)+cos x)/(e^(x) +sin x) dx...

`int(e^(x)+cos x)/(e^(x) +sin x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{e^x + \cos x}{e^x + \sin x} \, dx \), we will use substitution methods. Here’s a step-by-step solution: ### Step 1: Set up the integral Let \[ I = \int \frac{e^x + \cos x}{e^x + \sin x} \, dx \] ### Step 2: Choose a substitution We will make the substitution: \[ t = e^x + \sin x \] ### Step 3: Differentiate the substitution Now, we differentiate \( t \) with respect to \( x \): \[ dt = e^x \, dx + \cos x \, dx = (e^x + \cos x) \, dx \] This implies: \[ dx = \frac{dt}{e^x + \cos x} \] ### Step 4: Substitute in the integral Substituting \( t \) and \( dx \) into the integral, we have: \[ I = \int \frac{e^x + \cos x}{t} \cdot \frac{dt}{e^x + \cos x} \] The \( e^x + \cos x \) terms cancel out: \[ I = \int \frac{1}{t} \, dt \] ### Step 5: Integrate The integral of \( \frac{1}{t} \) is: \[ I = \ln |t| + C \] ### Step 6: Substitute back for \( t \) Now, we substitute back the value of \( t \): \[ I = \ln |e^x + \sin x| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{e^x + \cos x}{e^x + \sin x} \, dx = \ln |e^x + \sin x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7d|38 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int e^(x)cos x*dx

int e^(2x) sin x dx

int e^(x) sin x dx .

int e^x sin 2x dx

int e^x cos 2x dx

int e^x cos 3x dx

int e^(x)" sin "e^(x)dx

int e^(x)cos e^(x)dx

int e^(x)sin x cos xdx

int(cos x)e^(sin x)dx