Home
Class 12
MATHS
int(1)/((2 sin x + cos x)^(2))dx...

`int(1)/((2 sin x + cos x)^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{(2 \sin x + \cos x)^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{1}{(2 \sin x + \cos x)^2} \, dx \] ### Step 2: Divide by \( \cos^2 x \) We divide both the numerator and the denominator by \( \cos^2 x \): \[ \int \frac{1/\cos^2 x}{(2 \sin x/\cos^2 x + 1)^2} \, dx = \int \frac{\sec^2 x}{(2 \tan x + 1)^2} \, dx \] ### Step 3: Substitute \( t = \tan x \) Let \( t = \tan x \). Then, the derivative \( dt = \sec^2 x \, dx \) implies \( dx = \frac{dt}{\sec^2 x} \). Substituting this into the integral gives: \[ \int \frac{\sec^2 x}{(2t + 1)^2} \cdot \frac{dt}{\sec^2 x} = \int \frac{1}{(2t + 1)^2} \, dt \] ### Step 4: Integrate The integral \( \int \frac{1}{(2t + 1)^2} \, dt \) can be solved using the formula for the integral of \( \frac{1}{u^2} \): \[ \int \frac{1}{u^2} \, du = -\frac{1}{u} + C \] Thus, we have: \[ \int \frac{1}{(2t + 1)^2} \, dt = -\frac{1}{2t + 1} + C \] ### Step 5: Substitute Back Now we substitute back \( t = \tan x \): \[ -\frac{1}{2 \tan x + 1} + C \] ### Final Answer The final result for the integral is: \[ \int \frac{1}{(2 \sin x + \cos x)^2} \, dx = -\frac{1}{2 \tan x + 1} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7n|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7k|27 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(sin2x)/((sin x+cos x)^(2))dx

int(cos2x)/((sin x+cos x)^(2))dx=

int (1)/(sin^(2) x cos^(2)x) dx=?

Evaluate: int(1)/(sin^(2)x cos^(2)x)dx

int(1)/(3sin^(2) x+4 cos^(2) x)dx

int ((1) / (2) cos ^ (2) x) / ((sin x + cos x) ^ (2)) dx

Evaluate the following integrals: int (1)/(sin^(2)x cos^(2)x) dx

Evaluate: int(1)/(sin x(2cos^(2)x-1))dx

Evaluate : int (1)/(" sin"^(2) x " cos"^(2) x ") ") " dx "

Evaluate: (i) int sec^(2)(7-4x)dx (ii) int(1)/(sin^(2)x cos^(2)x)dx