Home
Class 12
MATHS
int(1)/(2+sin^(2) x)dx...

`int(1)/(2+sin^(2) x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{2 + \sin^2 x} \, dx \), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{1}{2 + \sin^2 x} \, dx \] To simplify the expression, we can divide the numerator and denominator by \( \cos^2 x \): \[ I = \int \frac{\frac{1}{\cos^2 x}}{\frac{2}{\cos^2 x} + \frac{\sin^2 x}{\cos^2 x}} \, dx = \int \frac{\sec^2 x}{\frac{2}{\cos^2 x} + \tan^2 x} \, dx \] ### Step 2: Use the substitution \( t = \tan x \) Let \( t = \tan x \), then \( dx = \frac{1}{\cos^2 x} \, dt = \sec^2 x \, dt \). Thus, we can rewrite the integral as: \[ I = \int \frac{1}{2 + t^2} \, dt \] ### Step 3: Recognize the standard integral form The integral \( \int \frac{1}{a^2 + x^2} \, dx \) has a standard result: \[ \int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \] In our case, \( a^2 = 2 \) (so \( a = \sqrt{2} \)), and \( x = t \): \[ I = \frac{1}{\sqrt{2}} \tan^{-1} \left( \frac{t}{\sqrt{2}} \right) + C \] ### Step 4: Substitute back for \( t \) Since \( t = \tan x \), we substitute back: \[ I = \frac{1}{\sqrt{2}} \tan^{-1} \left( \frac{\tan x}{\sqrt{2}} \right) + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{1}{2 + \sin^2 x} \, dx = \frac{1}{\sqrt{2}} \tan^{-1} \left( \frac{\tan x}{\sqrt{2}} \right) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7n|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7k|27 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(1)/(3-2sin^(2)x)dx

int (1)/(sin^(2)2x )dx

int(1)/(1-sin^(2)x)dx

int(1)/(sin2x-sin^(2)x)dx=

int(1)/(cos2x+sin^(2)x)dx

int(1)/(cos2x+sin^(2)x)dx=

Evaluate: int(1)/(sin^(2)x+sin2x)dx

Evaluate: int(1)/(sin^(2)x+sin2x)dx

int(1)/(sin^(2)xcos^(2)x)dx

int(1)/(sin^(2)xcos^(2)x)dx=?