Home
Class 12
MATHS
int(1)/(3sin^(2) x+4 cos^(2) x)dx...

`int(1)/(3sin^(2) x+4 cos^(2) x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{3 \sin^2 x + 4 \cos^2 x} \, dx \), we will follow these steps: ### Step 1: Rewrite the Denominator We start with the integral: \[ \int \frac{1}{3 \sin^2 x + 4 \cos^2 x} \, dx \] To simplify the denominator, we can multiply and divide by \( \cos^2 x \): \[ = \int \frac{\cos^2 x}{3 \sin^2 x \cos^2 x + 4 \cos^4 x} \, dx \] ### Step 2: Substitute \( \tan x \) Now we can use the substitution \( t = \tan x \), which gives us \( dt = \sec^2 x \, dx \) or \( dx = \frac{dt}{\sec^2 x} = \frac{dt}{1 + t^2} \). Also, we know that \( \sin^2 x = \frac{t^2}{1+t^2} \) and \( \cos^2 x = \frac{1}{1+t^2} \). Substituting these into the integral, we have: \[ = \int \frac{\frac{1}{1+t^2}}{3 \frac{t^2}{(1+t^2)} + 4 \frac{1}{(1+t^2)^2}} \cdot \frac{dt}{1+t^2} \] This simplifies to: \[ = \int \frac{1}{3t^2 + 4} \, dt \] ### Step 3: Factor Out Constants Next, we factor out the constant: \[ = \frac{1}{3} \int \frac{1}{t^2 + \frac{4}{3}} \, dt \] ### Step 4: Use the Integration Formula We can now use the integration formula: \[ \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \] In our case, \( a^2 = \frac{4}{3} \) so \( a = \frac{2}{\sqrt{3}} \). Thus, we have: \[ = \frac{1}{3} \cdot \frac{1}{\frac{2}{\sqrt{3}}} \tan^{-1} \left( \frac{t}{\frac{2}{\sqrt{3}}} \right) + C \] This simplifies to: \[ = \frac{\sqrt{3}}{6} \tan^{-1} \left( \frac{\sqrt{3} t}{2} \right) + C \] ### Step 5: Substitute Back for \( t \) Now, we substitute back \( t = \tan x \): \[ = \frac{\sqrt{3}}{6} \tan^{-1} \left( \frac{\sqrt{3} \tan x}{2} \right) + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{1}{3 \sin^2 x + 4 \cos^2 x} \, dx = \frac{\sqrt{3}}{6} \tan^{-1} \left( \frac{\sqrt{3} \tan x}{2} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7n|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7k|27 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sin^(2)x-4 cos^(2)x)dx

Evaluate: int(1)/(sin^(4)x cos^(2)x)dx

int(dx)/(3sin^(2)x+4cos^(2)x)

Evaluate: (i) int sin^(3)x cos^(5)xdx (ii) int(1)/(sin^(4)x cos^(2)x)dx

int(1)/(cos^(2) x-3 sin^(2) x)dx

int ((4-5sin x) / (cos ^ (2) x) + (1) / (sin ^ (2) x cos ^ (2) x)) dx

int (sin ^ (3) x + cos ^ (3) x) / (sin ^ (2) x * cos ^ (2) x) dx

Evaluate: int(sin x cos x)/(3sin^(2)x-4cos^(2)x)dx

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx

int(a sin^(3)x-b cos^(3)x)/(sin^(2)x cos^(2)x)dx