Home
Class 12
MATHS
int(1)/((sin x-2 cos x) (2 sin x+c osx))...

`int(1)/((sin x-2 cos x) (2 sin x+c osx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1}{(\sin x - 2 \cos x)(2 \sin x + \cos x)} \, dx, \] we will follow these steps: ### Step 1: Simplify the Denominator First, we rewrite the denominator: \[ (\sin x - 2 \cos x)(2 \sin x + \cos x). \] Expanding this gives: \[ \sin x \cdot 2 \sin x + \sin x \cdot \cos x - 2 \cos x \cdot 2 \sin x - 2 \cos x \cdot \cos x = 2 \sin^2 x - 3 \sin x \cos x - 2 \cos^2 x. \] ### Step 2: Change of Variables Next, we divide the numerator and denominator by \(\cos^2 x\): \[ \frac{1}{\cos^2 x} \cdot \frac{1}{2 \tan^2 x - 3 \tan x - 2}. \] Let \(t = \tan x\), then \(dx = \frac{1}{\cos^2 x} dt\). Thus, the integral becomes: \[ \int \frac{1}{2t^2 - 3t - 2} \, dt. \] ### Step 3: Factor the Quadratic Now, we need to factor the quadratic \(2t^2 - 3t - 2\). We can find the roots using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot (-2)}}{2 \cdot 2} = \frac{3 \pm \sqrt{9 + 16}}{4} = \frac{3 \pm 5}{4}. \] This gives us the roots: \[ t = 2 \quad \text{and} \quad t = -\frac{1}{2}. \] Thus, we can factor the quadratic as: \[ 2t^2 - 3t - 2 = 2(t - 2)(t + \frac{1}{2}). \] ### Step 4: Partial Fraction Decomposition Now we can use partial fraction decomposition: \[ \frac{1}{2(t - 2)(t + \frac{1}{2})} = \frac{A}{t - 2} + \frac{B}{t + \frac{1}{2}}. \] Multiplying through by the denominator gives: \[ 1 = A(t + \frac{1}{2}) + B(t - 2). \] Setting \(t = 2\): \[ 1 = A(2 + \frac{1}{2}) \implies A = \frac{1}{2.5} = \frac{2}{5}. \] Setting \(t = -\frac{1}{2}\): \[ 1 = B(-\frac{1}{2} - 2) \implies B = -\frac{1}{5}. \] Thus, we have: \[ \frac{1}{2(t - 2)(t + \frac{1}{2})} = \frac{2/5}{t - 2} - \frac{1/5}{t + \frac{1}{2}}. \] ### Step 5: Integrate Now we can integrate: \[ \int \left( \frac{2/5}{t - 2} - \frac{1/5}{t + \frac{1}{2}} \right) dt = \frac{2}{5} \ln |t - 2| - \frac{1}{5} \ln |t + \frac{1}{2}| + C. \] ### Step 6: Substitute Back Substituting back \(t = \tan x\): \[ \frac{2}{5} \ln |\tan x - 2| - \frac{1}{5} \ln |\tan x + \frac{1}{2}| + C. \] ### Final Answer Thus, the final answer is: \[ \int \frac{1}{(\sin x - 2 \cos x)(2 \sin x + \cos x)} \, dx = \frac{2}{5} \ln |\tan x - 2| - \frac{1}{5} \ln |\tan x + \frac{1}{2}| + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7n|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7k|27 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(1)/((sin x-2cos x)(2sin x+cos x))dx

int(dx)/(sin x(2+cos x-2sin x))

int_ (0) ^ ((pi) / (2)) (sin x-cos x) / (1 + sin x cos x) dx

int 1/(sin^2x cos^2x) dx

int(sin x+cosx)/(sin x-cos x)^2dx

int_(0)^(pi//2)(sin x - cos x)/(1-sin x cos x)dx=

int(sin2x)/((sin x+cos x)^(2))dx

int(cos 2x)/(1+sin x cos x)dx

int_(0)^(pi//2) ""(sin x - cos x)/( 1-sin x * cos x) dx is equal to

int_(0)^( pi/2)(sin x-cos x)/(1+sin x*cos x)*dx