Home
Class 12
MATHS
int(1)/(4+5 cosx)dx...

`int(1)/(4+5 cosx)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{4 + 5 \cos x} \, dx \), we can use the Weierstrass substitution, which involves substituting \( t = \tan\left(\frac{x}{2}\right) \). This substitution is useful because it simplifies the trigonometric functions. ### Step-by-Step Solution: 1. **Substitution**: Let \( t = \tan\left(\frac{x}{2}\right) \). Then, we have: \[ \cos x = \frac{1 - t^2}{1 + t^2} \] and the differential \( dx \) can be expressed as: \[ dx = \frac{2}{1 + t^2} \, dt \] 2. **Rewrite the Integral**: Substitute \( \cos x \) and \( dx \) into the integral: \[ \int \frac{1}{4 + 5 \cos x} \, dx = \int \frac{1}{4 + 5 \left(\frac{1 - t^2}{1 + t^2}\right)} \cdot \frac{2}{1 + t^2} \, dt \] 3. **Simplify the Denominator**: The expression in the denominator becomes: \[ 4 + 5 \left(\frac{1 - t^2}{1 + t^2}\right) = \frac{(4 + 5) + (5)(-t^2)}{1 + t^2} = \frac{9 - 5t^2}{1 + t^2} \] Thus, the integral now looks like: \[ \int \frac{2(1 + t^2)}{9 - 5t^2} \, dt \] 4. **Separate the Integral**: We can separate the integral: \[ \int \frac{2}{9 - 5t^2} \, dt + \int \frac{2t^2}{9 - 5t^2} \, dt \] 5. **Integrate Each Part**: For the first part, we can use the formula for the integral of \( \frac{1}{a^2 - x^2} \): \[ \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C \] Here, \( a^2 = \frac{9}{5} \) or \( a = \frac{3}{\sqrt{5}} \): \[ \int \frac{2}{9 - 5t^2} \, dt = \frac{2}{\sqrt{5} \cdot 3} \tan^{-1}\left(\frac{\sqrt{5}}{3} t\right) + C \] For the second part, we can use the substitution \( u = 9 - 5t^2 \): \[ \int \frac{2t^2}{9 - 5t^2} \, dt = -\frac{2}{5} \int du = -\frac{2}{5}u + C = -\frac{2}{5}(9 - 5t^2) + C \] 6. **Combine Results**: Combine the results from both integrals and substitute back \( t = \tan\left(\frac{x}{2}\right) \): \[ \int \frac{1}{4 + 5 \cos x} \, dx = \frac{2}{3\sqrt{5}} \tan^{-1}\left(\frac{\sqrt{5}}{3} \tan\left(\frac{x}{2}\right)\right) - \frac{2}{5}(9 - 5\tan^2\left(\frac{x}{2}\right)) + C \] ### Final Answer: \[ \int \frac{1}{4 + 5 \cos x} \, dx = \frac{2}{3\sqrt{5}} \tan^{-1}\left(\frac{\sqrt{5}}{3} \tan\left(\frac{x}{2}\right)\right) - \frac{18}{5} + \frac{2}{5} \tan^2\left(\frac{x}{2}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7n|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7k|27 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(1+cosx)dx=

int(dx)/(3+5cosx)=

int(x)/(1-cosx)dx=

int(1)/(sinx-cosx)dx=

int(x)/(1+cosx)dx

int(1)/(cosx+secx)dx=

Evaluate: int1/(5+4cosx)\ dx

int(dx)/(1+cosx)

int(cosx)/(1-cosx)dx=

int(cosx)/(1+cosx)dx=