Home
Class 12
MATHS
int(1//e)^(e) (dx)/(x(log x)^(1//3))...

`int_(1//e)^(e) (dx)/(x(log x)^(1//3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{1}{e}}^{e} \frac{dx}{x (\log x)^{\frac{1}{3}}} \] we will use the substitution \( \log x = t \). ### Step 1: Change of Variables Let \( t = \log x \). Then, we differentiate both sides: \[ \frac{dt}{dx} = \frac{1}{x} \implies dx = x \, dt = e^t \, dt \] ### Step 2: Change the Limits of Integration When \( x = \frac{1}{e} \), \[ t = \log\left(\frac{1}{e}\right) = -1 \] When \( x = e \), \[ t = \log(e) = 1 \] So, the limits change from \( x: \left[\frac{1}{e}, e\right] \) to \( t: [-1, 1] \). ### Step 3: Substitute in the Integral Now substituting \( x = e^t \) into the integral, we have: \[ I = \int_{-1}^{1} \frac{e^t \, dt}{e^t (t)^{\frac{1}{3}}} = \int_{-1}^{1} \frac{dt}{t^{\frac{1}{3}}} \] ### Step 4: Simplify the Integral The integral simplifies to: \[ I = \int_{-1}^{1} t^{-\frac{1}{3}} \, dt \] ### Step 5: Evaluate the Integral Now we can evaluate the integral: \[ I = \int_{-1}^{1} t^{-\frac{1}{3}} \, dt \] This can be split into two parts: \[ I = \int_{-1}^{0} t^{-\frac{1}{3}} \, dt + \int_{0}^{1} t^{-\frac{1}{3}} \, dt \] ### Step 6: Calculate Each Integral For \( t^{-\frac{1}{3}} \): \[ \int t^{-\frac{1}{3}} \, dt = \frac{t^{\frac{2}{3}}}{\frac{2}{3}} = \frac{3}{2} t^{\frac{2}{3}} \] Evaluating from \( -1 \) to \( 0 \): \[ \int_{-1}^{0} t^{-\frac{1}{3}} \, dt = \left[ \frac{3}{2} t^{\frac{2}{3}} \right]_{-1}^{0} = \frac{3}{2} (0^{\frac{2}{3}} - (-1)^{\frac{2}{3}}) = \frac{3}{2} (0 - 1) = -\frac{3}{2} \] Evaluating from \( 0 \) to \( 1 \): \[ \int_{0}^{1} t^{-\frac{1}{3}} \, dt = \left[ \frac{3}{2} t^{\frac{2}{3}} \right]_{0}^{1} = \frac{3}{2} (1^{\frac{2}{3}} - 0^{\frac{2}{3}}) = \frac{3}{2} (1 - 0) = \frac{3}{2} \] ### Step 7: Combine Results Now, combine both parts: \[ I = -\frac{3}{2} + \frac{3}{2} = 0 \] Thus, the value of the integral is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7p|28 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(e)(dx)/(x(1+log x))

int_(1)^(e^(2))(dx)/(x(1+log x)^(2))=

int_(1)^(e) log (x) dx=

int_(1)^(e )((log x)^(3))/(x)dx=

int_(1)^(e)(e^(x))/(x)(1+x log x)dx

int_(1)^(e )((log x)^(4))/(x)dx=

int_(1)^(e )(1)/(x sqrt(log x))dx=

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

int_(1)^(e )(1)/(6x(log x)^(2)+7x log x + 2x)dx=

The value of int_(1)^(e)((tan^(-1)x)/(x)+(log x)/(1+x^(2)))dx is tan e(b)tan^(-1)e tan^(-1)((1)/(e))(d) none of these