Home
Class 12
MATHS
int(-1)^(2) (x) /((x^(2)+1)^(2))dx...

`int_(-1)^(2) (x) /((x^(2)+1)^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-1}^{2} \frac{x}{(x^2 + 1)^2} \, dx \), we will use a substitution method. Here’s a step-by-step breakdown of the solution: ### Step 1: Substitution Let \( t = x^2 + 1 \). Then, differentiate both sides: \[ dt = 2x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2x} \] ### Step 2: Change the limits of integration When \( x = -1 \): \[ t = (-1)^2 + 1 = 2 \] When \( x = 2 \): \[ t = 2^2 + 1 = 5 \] Thus, the limits change from \( x = -1 \) to \( x = 2 \) into \( t = 2 \) to \( t = 5 \). ### Step 3: Rewrite the integral Substituting \( t \) and \( dx \) into the integral, we have: \[ I = \int_{2}^{5} \frac{x}{t^2} \cdot \frac{dt}{2x} \] The \( x \) terms cancel out: \[ I = \int_{2}^{5} \frac{1}{2t^2} \, dt \] ### Step 4: Integrate Now, we can integrate: \[ I = \frac{1}{2} \int_{2}^{5} t^{-2} \, dt \] The integral of \( t^{-2} \) is: \[ \int t^{-2} \, dt = -\frac{1}{t} \] Thus, \[ I = \frac{1}{2} \left[-\frac{1}{t}\right]_{2}^{5} \] ### Step 5: Evaluate the definite integral Now, we evaluate the limits: \[ I = \frac{1}{2} \left(-\frac{1}{5} + \frac{1}{2}\right) \] Calculating this gives: \[ I = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{5}\right) = \frac{1}{2} \left(\frac{5}{10} - \frac{2}{10}\right) = \frac{1}{2} \cdot \frac{3}{10} = \frac{3}{20} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{3}{20} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7p|28 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx

int_(-1)^(1)(x)/(sqrt(a^(2)-x^(2)))dx(a>1)

int_(1)^(2)(x^(x^(2))+[x^(2)]^(x))dx

int_(-1)^(1)(x^(2)-1)/(x^(2)+1)dx=

int_(-1) ^(1) x^(2) /(1+x^(2)) dx =

int_(1)^(2)(1)/(x sqrt(x^(2)-1))dx=

int(2x-1-x^(2))/((1+x^(2))^(2))dx is equal to

I=int(2x-1-x^(2))/((1+x^(2))^(2))dx is equal to

Evaluate : int_(-1)^(1)(x^(2))/(1+x^(2))dx

int((x^(2)+x+1))/((x+2)(x+1)^(2))dx