Home
Class 12
MATHS
int(0)^(pi//2) (1)/(4+3 cos x)dx...

`int_(0)^(pi//2) (1)/(4+3 cos x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{4 + 3 \cos x} \, dx, \] we can use a substitution involving the tangent function. Here’s a step-by-step solution: ### Step 1: Use the substitution \( t = \tan\left(\frac{x}{2}\right) \) Using the Weierstrass substitution, we have: \[ \cos x = \frac{1 - t^2}{1 + t^2} \] and \[ dx = \frac{2}{1 + t^2} \, dt. \] ### Step 2: Change the limits of integration When \( x = 0 \), \( t = \tan(0) = 0 \). When \( x = \frac{\pi}{2} \), \( t = \tan\left(\frac{\pi}{4}\right) = 1 \). Thus, the limits change from \( x: 0 \to \frac{\pi}{2} \) to \( t: 0 \to 1 \). ### Step 3: Substitute into the integral Now substituting into the integral: \[ I = \int_{0}^{1} \frac{1}{4 + 3 \left(\frac{1 - t^2}{1 + t^2}\right)} \cdot \frac{2}{1 + t^2} \, dt. \] ### Step 4: Simplify the integrand The integrand becomes: \[ I = \int_{0}^{1} \frac{2}{(4 + 3 \frac{1 - t^2}{1 + t^2})(1 + t^2)} \, dt. \] Now simplifying the term in the denominator: \[ 4 + 3 \frac{1 - t^2}{1 + t^2} = \frac{(4 + 3)(1 + t^2) + 3(1 - t^2)}{1 + t^2} = \frac{7 + 4t^2}{1 + t^2}. \] Thus, we have: \[ I = \int_{0}^{1} \frac{2(1 + t^2)}{7 + 4t^2} \, dt. \] ### Step 5: Split the integral This can be split into two parts: \[ I = 2 \int_{0}^{1} \frac{1}{7 + 4t^2} \, dt + 2 \int_{0}^{1} \frac{t^2}{7 + 4t^2} \, dt. \] ### Step 6: Evaluate the first integral The first integral can be evaluated using the formula: \[ \int \frac{1}{a + bx^2} \, dx = \frac{1}{\sqrt{ab}} \tan^{-1}\left(\frac{\sqrt{b}}{\sqrt{a}} x\right) + C. \] For \( a = 7 \) and \( b = 4 \): \[ \int_{0}^{1} \frac{1}{7 + 4t^2} \, dt = \frac{1}{\sqrt{7 \cdot 4}} \tan^{-1}\left(\frac{2}{\sqrt{7}} t\right) \bigg|_0^1 = \frac{1}{2\sqrt{7}} \left(\tan^{-1}\left(\frac{2}{\sqrt{7}}\right) - \tan^{-1}(0)\right). \] Thus, \[ \int_{0}^{1} \frac{1}{7 + 4t^2} \, dt = \frac{1}{2\sqrt{7}} \tan^{-1}\left(\frac{2}{\sqrt{7}}\right). \] ### Step 7: Evaluate the second integral For the second integral, we can use integration by parts or another substitution. However, we can also use the result from the first integral to find: \[ \int_{0}^{1} \frac{t^2}{7 + 4t^2} \, dt = \frac{1}{4} \int_{0}^{1} \frac{1}{7 + 4t^2} \, dt - \frac{1}{4} \int_{0}^{1} \frac{1}{7 + 4t^2} \, dt. \] ### Final Result Combining both integrals and simplifying gives us the final result: \[ I = \frac{1}{2\sqrt{7}} \tan^{-1}\left(\frac{2}{\sqrt{7}}\right). \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7p|28 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(1)/(5+4cos x)dx=

int_(0)^(pi//4) (1)/(1+cos 2x)dx

int_(0)^(pi//2) (dx)/(1+2 cos x)

int_(0)^(pi//2)(1)/(2+cos x)dx=

int_(0)^((pi)/(2))(1)/(4+5cos x)dx=

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi/2)(x)/(1+cos x)dx =

int_(0)^( pi/2)(sin x)/(1+cos x)dx