Home
Class 12
MATHS
int(0)^(pi//4) e^(x) (tan x+ sec^(2)x) d...

`int_(0)^(pi//4) e^(x) (tan x+ sec^(2)x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{0}^{\frac{\pi}{4}} e^{x} \left( \tan x + \sec^{2} x \right) dx, \] we can use the integration formula for the product of an exponential function and the derivative of another function. The formula states: \[ \int e^{x} (f(x) + f'(x)) \, dx = e^{x} f(x) + C, \] where \( f(x) \) is a differentiable function and \( f'(x) \) is its derivative. ### Step-by-step Solution: 1. **Identify \( f(x) \)**: Here, we can let \( f(x) = \tan x \). The derivative of \( f(x) \) is \( f'(x) = \sec^{2} x \). 2. **Apply the Integration Formula**: According to the formula, we can rewrite the integral as: \[ \int e^{x} \left( \tan x + \sec^{2} x \right) dx = e^{x} \tan x + C. \] 3. **Evaluate the Integral with Limits**: Now we need to evaluate this expression from \( 0 \) to \( \frac{\pi}{4} \): \[ \left[ e^{x} \tan x \right]_{0}^{\frac{\pi}{4}}. \] 4. **Calculate the Upper Limit**: First, we calculate the upper limit: \[ e^{\frac{\pi}{4}} \tan\left(\frac{\pi}{4}\right) = e^{\frac{\pi}{4}} \cdot 1 = e^{\frac{\pi}{4}}. \] 5. **Calculate the Lower Limit**: Next, we calculate the lower limit: \[ e^{0} \tan(0) = 1 \cdot 0 = 0. \] 6. **Subtract the Lower Limit from the Upper Limit**: Now we subtract the lower limit from the upper limit: \[ e^{\frac{\pi}{4}} - 0 = e^{\frac{\pi}{4}}. \] ### Final Answer: Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{4}} e^{x} \left( \tan x + \sec^{2} x \right) dx = e^{\frac{\pi}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7p|28 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)e^(x)(tan x + sec^(2)x) dx = ______.

int_(0)^(pi//4)e^(x)(1+tan x + tan^(2)x)dx=

int_(0)^(pi//4)e^(x)sin x dx =

(i) int_(0)^(pi//4) e^(tanx) . sec^(2) x dx (ii) int_(0)^(pi//4) (sin (cos 2x))/(" cosec " 2x)dx

int e^(x)(tan x+sec^(2)x)*dx

Evaluate the following : int_(0)^(pi//4)e^(x)(1+tanx+tan^(2)x)dx

int_(0)^( pi/4)e^(tan x)*sec^(2)xdx

int_(0)^(pi//4) sec^(4) x" dx =

int_(0)^(pi//4) tan^(6)x sec^(2)x dx=