Home
Class 12
MATHS
int(0)^(pi//2) x sin x cos x dx...

`int_(0)^(pi//2) x sin x cos x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} x \sin x \cos x \, dx \), we can use the identity for sine: \[ \sin 2x = 2 \sin x \cos x \implies \sin x \cos x = \frac{1}{2} \sin 2x \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} x \left(\frac{1}{2} \sin 2x\right) \, dx = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} x \sin 2x \, dx \] Now, let’s denote \( J = \int_{0}^{\frac{\pi}{2}} x \sin 2x \, dx \). Therefore, we have: \[ I = \frac{1}{2} J \] Next, we will solve \( J \) using integration by parts. We choose: - \( u = x \) (thus \( du = dx \)) - \( dv = \sin 2x \, dx \) (thus \( v = -\frac{1}{2} \cos 2x \)) Using integration by parts, we have: \[ J = \left[ u v \right]_{0}^{\frac{\pi}{2}} - \int v \, du \] Substituting the values: \[ J = \left[ x \left(-\frac{1}{2} \cos 2x\right) \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \left(-\frac{1}{2} \cos 2x\right) \, dx \] Calculating the boundary term: \[ \left[ -\frac{1}{2} x \cos 2x \right]_{0}^{\frac{\pi}{2}} = -\frac{1}{2} \left(\frac{\pi}{2} \cos(\pi)\right) - \left(-\frac{1}{2} \cdot 0 \cdot \cos(0)\right) = -\frac{1}{2} \left(\frac{\pi}{2} \cdot (-1)\right) = \frac{\pi}{4} \] Now, we need to compute the integral: \[ \int_{0}^{\frac{\pi}{2}} -\frac{1}{2} \cos 2x \, dx = -\frac{1}{2} \cdot \left[ \frac{1}{2} \sin 2x \right]_{0}^{\frac{\pi}{2}} = -\frac{1}{2} \cdot \left(0 - 0\right) = 0 \] So we have: \[ J = \frac{\pi}{4} + 0 = \frac{\pi}{4} \] Finally, substituting back into our expression for \( I \): \[ I = \frac{1}{2} J = \frac{1}{2} \cdot \frac{\pi}{4} = \frac{\pi}{8} \] Thus, the value of the integral is: \[ \boxed{\frac{\pi}{8}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7p|28 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin cos x dx=?

int_(0)^(pi) x sin x. cos^(2) x dx

int_(0)^(pi//2) e^(x) (sin x + cos x) dx

int_(0)^(pi) x sin x cos^(2)x\ dx

Evaluate : int_(0)^(pi//2)e^(x)(sin x- cos x)dx

int_(0)^(pi//2) ""(sin x - cos x)/( 1-sin x * cos x) dx is equal to