Home
Class 12
MATHS
int(0)^(pi//2) (dx)/(1+2 cos x)...

`int_(0)^(pi//2) (dx)/(1+2 cos x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + 2 \cos x} \), we can follow these steps: ### Step 1: Rewrite the integral using the identity for cosine We know that \( \cos x = \frac{1 - \tan^2(\frac{x}{2})}{1 + \tan^2(\frac{x}{2})} \). We will use this identity to rewrite the integral in terms of \( t = \tan(\frac{x}{2}) \). ### Step 2: Change of variable Using the substitution \( t = \tan\left(\frac{x}{2}\right) \), we have: \[ dx = \frac{2}{1 + t^2} dt \] When \( x = 0 \), \( t = 0 \) and when \( x = \frac{\pi}{2} \), \( t = 1 \). ### Step 3: Substitute in the integral Substituting \( \cos x \) and \( dx \) into the integral, we get: \[ I = \int_{0}^{1} \frac{2}{1 + 2\left(\frac{1 - t^2}{1 + t^2}\right)} \cdot \frac{1}{1 + t^2} dt \] ### Step 4: Simplify the integrand Simplifying the integrand: \[ 1 + 2\cos x = 1 + 2\left(\frac{1 - t^2}{1 + t^2}\right) = \frac{(1 + t^2) + 2(1 - t^2)}{1 + t^2} = \frac{3 - t^2}{1 + t^2} \] Thus, \[ I = \int_{0}^{1} \frac{2}{\frac{3 - t^2}{1 + t^2}} \cdot \frac{1}{1 + t^2} dt = \int_{0}^{1} \frac{2(1 + t^2)}{3 - t^2} dt \] ### Step 5: Split the integral Now we can split the integral: \[ I = \int_{0}^{1} \frac{2}{3 - t^2} dt + \int_{0}^{1} \frac{2t^2}{3 - t^2} dt \] ### Step 6: Evaluate the first integral The first integral can be evaluated as: \[ \int \frac{2}{3 - t^2} dt = -\frac{2}{\sqrt{3}} \log\left| \sqrt{3} + t \right| + C \] Evaluating from 0 to 1: \[ \left[-\frac{2}{\sqrt{3}} \log(\sqrt{3} + 1) + \frac{2}{\sqrt{3}} \log(\sqrt{3})\right] \] ### Step 7: Evaluate the second integral For the second integral: \[ \int \frac{2t^2}{3 - t^2} dt \] We can use the substitution \( u = 3 - t^2 \) to evaluate this integral. ### Step 8: Combine results After evaluating both integrals, we combine the results to find the value of \( I \). ### Final Result After performing the calculations, we find: \[ I = \frac{1}{\sqrt{3}} \log\left( \frac{2 + \sqrt{3}}{1} \right) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7p|28 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(dx)/(2+cos x)=

int_(0)^((pi)/(2))(dx)/(1+2cos x)

int_(0)^(pi//2) (1)/(4+3 cos x)dx

int_(0)^(pi//2)(1)/(2+cos x)dx=

int_(0)^(pi/2)(x)/(1+cos x)dx =

int_(0)^(pi//4) (1)/(1+cos 2x)dx

int_(0)^(pi//4)(dx)/((1+cos2x))

Evaluate : int _(0)^(pi//2) 1/(1 + cos x) dx

int_(0)^(pi//2) x^(2) cos x dx