Home
Class 12
MATHS
int(0)^(pi) x sin x. cos^(2) x dx...

`int_(0)^(pi) x sin x. cos^(2) x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} x \sin x \cos^2 x \, dx \), we will use a property of definite integrals. Let's go through the steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{\pi} x \sin x \cos^2 x \, dx \] ### Step 2: Use the property of definite integrals We can use the property of definite integrals which states that: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In our case, \( a = 0 \) and \( b = \pi \), so we have: \[ I = \int_{0}^{\pi} (\pi - x) \sin(\pi - x) \cos^2(\pi - x) \, dx \] ### Step 3: Simplify the integral Using the trigonometric identities: - \( \sin(\pi - x) = \sin x \) - \( \cos(\pi - x) = -\cos x \) (but since we have \( \cos^2(\pi - x) \), it will remain \( \cos^2 x \)) Thus, we can rewrite the integral: \[ I = \int_{0}^{\pi} (\pi - x) \sin x \cos^2 x \, dx \] ### Step 4: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\pi} x \sin x \cos^2 x \, dx \) 2. \( I = \int_{0}^{\pi} (\pi - x) \sin x \cos^2 x \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\pi} \left( x + (\pi - x) \right) \sin x \cos^2 x \, dx \] This simplifies to: \[ 2I = \int_{0}^{\pi} \pi \sin x \cos^2 x \, dx \] ### Step 5: Factor out constants We can factor out the constant \( \pi \): \[ 2I = \pi \int_{0}^{\pi} \sin x \cos^2 x \, dx \] ### Step 6: Solve the integral Now we need to evaluate the integral \( \int_{0}^{\pi} \sin x \cos^2 x \, dx \). We can use the substitution \( u = \cos x \), which gives \( du = -\sin x \, dx \). The limits change as follows: - When \( x = 0 \), \( u = 1 \) - When \( x = \pi \), \( u = -1 \) Thus, the integral becomes: \[ \int_{0}^{\pi} \sin x \cos^2 x \, dx = -\int_{1}^{-1} u^2 \, du = \int_{-1}^{1} u^2 \, du \] ### Step 7: Evaluate the new integral Now we evaluate: \[ \int_{-1}^{1} u^2 \, du = \left[ \frac{u^3}{3} \right]_{-1}^{1} = \frac{1^3}{3} - \frac{(-1)^3}{3} = \frac{1}{3} - \left(-\frac{1}{3}\right) = \frac{2}{3} \] ### Step 8: Substitute back to find \( I \) Substituting back, we have: \[ 2I = \pi \cdot \frac{2}{3} \] Thus, \[ I = \frac{\pi}{3} \] ### Final Answer The value of the integral is: \[ \int_{0}^{\pi} x \sin x \cos^2 x \, dx = \frac{\pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7p|28 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x cos x dx

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

The value of the integral int_(0)^(pi) (x sin x)/(1+cos^(2)x)dx , is

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

int_(0)^(2 pi)x(sin^(2)x cos^(2)x)dx=

int _(0)^(pi//2) x sin^(2) x cos^(2) x dx is equal to

Evaluate: int_(0)^( pi)(x sin x)/(1+cos^(2)x)dx

Evaluate int_(0)^( pi)(x sin x)/(1+cos^(2)x)dx

Evaluate: int_(0)^( pi)(x sin x)/(1+cos^(2)x)dx