Home
Class 12
MATHS
int (e^(2x)-1)/(e^(2x)+1) dx=?...

`int (e^(2x)-1)/(e^(2x)+1) dx=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{e^{2x} - 1}{e^{2x} + 1} \, dx\), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{e^{2x} - 1}{e^{2x} + 1} \, dx \] ### Step 2: Substitute \(u = e^{2x}\) Let \(u = e^{2x}\). Then, the differential \(du\) can be calculated as follows: \[ du = 2e^{2x} \, dx \quad \Rightarrow \quad dx = \frac{du}{2u} \] ### Step 3: Substitute in the Integral Now, substitute \(u\) and \(dx\) into the integral: \[ I = \int \frac{u - 1}{u + 1} \cdot \frac{du}{2u} \] ### Step 4: Simplify the Integral This can be simplified: \[ I = \frac{1}{2} \int \frac{u - 1}{u(u + 1)} \, du \] We can split the fraction: \[ \frac{u - 1}{u(u + 1)} = \frac{u}{u(u + 1)} - \frac{1}{u(u + 1)} = \frac{1}{u + 1} - \frac{1}{u} \] Thus, the integral becomes: \[ I = \frac{1}{2} \int \left( \frac{1}{u + 1} - \frac{1}{u} \right) \, du \] ### Step 5: Integrate Each Term Now we can integrate each term: \[ I = \frac{1}{2} \left( \ln|u + 1| - \ln|u| \right) + C \] This simplifies to: \[ I = \frac{1}{2} \ln \left| \frac{u + 1}{u} \right| + C \] ### Step 6: Substitute Back for \(u\) Now substitute back \(u = e^{2x}\): \[ I = \frac{1}{2} \ln \left| \frac{e^{2x} + 1}{e^{2x}} \right| + C \] This simplifies to: \[ I = \frac{1}{2} \ln \left| 1 + e^{-2x} \right| + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{e^{2x} - 1}{e^{2x} + 1} \, dx = \frac{1}{2} \ln \left| 1 + e^{-2x} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7s|20 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7q|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

I=int(e^(2x)-1)/(e^(2x))dx

int(e^(2x)+1)/(e^(x))dx

int(e^(4x)-1)/(e^(2x))dx

int(e^(5x)-1)/(e^(2x))dx

int((e^(2x))/(e^(2x)-1))dx=

int(e^(2x))/(1+e^(2x))dx=

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int(e^(2x))/(1+e^(x))dx

int(e^(x))/((e^(2x)+1))dx=?

" (6) "int(e^(2x))/(e^(2x)+1)dx